

Baseline Contamination Study

Bermagui Sporting Clays

10 July 2020

Project No.: 0555344

Document details	
Document title	Baseline Contamination Assessment
Document subtitle	Bermagui Sporting Clays
Project No.	0555344
Date	10 July 2020
Version	1.1
Authors	Brittany Knight, Ian Batterley
Client Name	Sporting Clays NSW

				ERM approval	to issue	
Version	Revision	Author	Reviewed by	Name	Date	Comments
Draft	00	Brittany Knight	lan Batterley	Peter Lavelle CEnvP SC	1 July 2020	Draft for client review
Final	01	Brittany Knight, lan Batterley	Sophie Wood CEnvP SC	Peter Lavelle CEnvP SC	10 July 2020	Final for issue

Signature Page

10 July 2020

Baseline Contamination Study

Bermagui Sporting Clays

Brittany Knight

Environmental Consultant

lan Batterley Project Manager

Peter Lavelle
Partner CEnvP SC

Dr Sophie Wood Partner CEnvP SC

Environmental Resources Management Australia Pty Ltd

Level 15, 309 Kent Street

Sydney NSW 2000

© Copyright 2020 by ERM Worldwide Group Ltd and/or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

CONTENTS

EXE(CUTIVE	SUMMA	NRY			
1.	INTRO	DUCTIO	ON	1		
	1.1	•	ound			
	1.2	Objectiv	/es	1		
2.	SCOF	E OF WO	ORKS	2		
3.	SITE	DENTIFI	CATION	3		
	3.1	Site Set	ting, Surrounding Environment and Site History	3		
4.	PREV	IOUS IN	VESTIGATIONS	5		
5.	DATA	QUALIT	Y OBJECTIVES	6		
	5.1	•	State the Problem			
	5.2	•	Identify the Decisions			
	5.3		Identify Inputs to the Decisions			
	5.4 5.5	•	Define the Study Boundaries Develop a Decision Rule			
	5.6	•	Specify the Performance or Acceptance Criteria			
	5.7	-	Optimise the Design for Obtaining Data			
6.	ASSE	SSMENT	CRITERIA	9		
7.	INVES	STIGATIO	ON METHODOLOGY			
	7.1	Surface	Soil Investigation Locations	11		
	7.2	Sedimer	nt and Surface Water Investigation Locations	11		
8.	INVES	STIGATIO	ON RESULTS	12		
	8.1	Soil Inve	estigation	12		
		8.1.1	Field Observations			
		8.1.2	Soil Analytical Results			
	8.2		Water and Sediment Investigation			
		8.2.1	Field Observations			
	0.0	8.2.2	Surface Water and Sediment Analytical Results			
0	8.3	-	Assurance and Quality Control – Data Usability			
9.			ICEPTUAL SITE MODEL			
	9.1 9.2		al Sources of Contamination			
	9.3		al Receptors			
	9.4		Conceptual Site Model			
10.	CONC	CLUSION	s	17		
11.	REFE	RENCES	S	19		
12.	STAT	EMENT (OF LIMITATIONS	20		
APPE	ENDIX .	A FIG	GURES			
APPE	ENDIX	B TA	ABLES			
APPE	ENDIX	C SA	AQP			
APPE	ENDIX	D FII	ELD NOTES			
APPE	ENDIX	E PH	HOTOLOG			
APPE	ENDIX	F LA	ABORATORY REPORTS			
APPENDIX G		G PF	PROUCL CALCULATIONS			

List of Tables

	Site Identification	
•	Site Identification and Conditionary of Previous Investigations	
	on Rules	
	ary of Soil Investigation Locations by APEC	
	ary of Sediment and Surface Water Investigation	
	e Water Field Quality Parametersnary Conceptual Site Model	
Acronyms and A		
Name	Description	
ACM	Asbestos Containing Material	
AHD	Australian Height Datum	
AMG	Australian Map Grid	
ASC NEPM	National Environment Protection (Assessment of Site Contamination) Measure	
ASS	Acid Sulfate Soils	
B[a]P	Benzo[a]pyrene	
BSC	Bermagui Sporting Clays	
BTEX	Benzene, Toluene, Ethylbenzene and Xylenes	
CLM	Contaminated Land Management Act 1997	
CoPC	Contaminant of Potential Concern	
CSM	Conceptual Site Model	
DP	Deposited Plan	
DPI	Department of Primary Industries	
DSI	Detailed Site Investigation	
EPL	Environment Protection License	
ESA	Environmental Site Assessment	
m	Metre	
m AHD	Metres Above Australian Height Datum	
m bgl	Metres Below Ground Level	
MGA	Map Grid of Australia	
NEPC	National Environment Protection Council	
NEPM	National Environment Protection Measure	
NSW EPA	New South Wales Environment Protection Authority	
OCP	Organochlorine Pesticides	
OPP	Organophosphorus Pesticides	
PAH	Polycyclic Aromatic Hydrocarbons	
POEO Act	Protection of the Environment Operations Act 1997	
RAP	Remedial Action Plan	
SAQP	Sampling and Analysis Quality Plan	
SC NSW	Sporting Clays NSW	
TRH	Total Recoverable Hydrocarbons	

EXECUTIVE SUMMARY

ERM was engaged by Sporting Clays New South Wales (SC NSW) to undertake a Baseline Assessment of the Site identified as the Bermagui Sporting Clays (BSC) club grounds located at Lot 101, Murrah River Road Bermagui NSW 2546.

Information provided to ERM indicated that the Site has been used as a venue for sporting clays (a competitive shotgun shooting sport) competition since 1998 when the club was formed. Under current approvals the site is permitted to shoot for up to twelve days per year.

In 2013 the BSC submitted an application to Council to modify their existing DA to enable an additional twelve days shooting days per year for the purpose of training new and inexperienced shooters. As part of the DA process Council required BSC to undertake a baseline contamination assessment of potential contamination resulting from shooting activities undertaken within the Site to be undertaken.

The overarching objectives for this Baseline Assessment were therefore to assess the concentrations of contaminants of potential concern (CoPCs) and determine the potential for complete 'source-pathway-receptor' linkages (SPR linkages) resulting from the shooting activities undertaken on the property.

To achieve the objectives outlined above, ERM completed a scope of works which included the sampling and analysis of soil, sediment and surface water for a range of potential contaminants of concern from a total of 65 locations both on and off-site.

Laboratory analysis of collected surface soil samples generally returned concentrations of all CoPCs less than the limit of reporting and/or the adopted screening criteria with only two exceptions: one being for lead and the other for benzo[a]pyrene, with both samples being located within the central portion of the site away from the site boundary. Further statistical assessment of the on-site data sets indicated that these localised impacts were not significant.

Given the fact that the exceedances of screening values that were detected are both located within the high use areas of the site and the expected "fall zone" of clay targets and shot, there is no evidence that significant migration of these impacts has occurred with concentrations outside of the likely fall zone rapidly decreasing outside of this inner area and toward the site boundary.

The preliminary Conceptual Site Model (CSM) developed during the planning of the assessment was updated based on field observations and laboratory analysis of collected surface soil, surface water and sediment samples collected during this investigation.

Based on the results of the refined CSM, it is the opinion of ERM that there are no complete Source-Pathway-Receptor (SPR) linkages and therefore that the historical and current land use practices (sporting clay shooting) pose no significant contamination risks to identified human health and ecological receptors. In addition, despite the club being operational for some 30 years there is no evidence of significant migration of lead impacts from the higher impact areas within the core of the site toward the site boundary.

Given that no complete SPR linkages have been identified (and that the club is already operating in line with the Draft Environmental Guidelines for Shooting Ranges prepared by Sporting Clays Australia) specific measures that may need to be undertaken to mitigate potential contamination of the Site and adjoining lands and waterways have not been identified.

1. INTRODUCTION

Environmental Resources Management Australia Pty Ltd (ERM) was commissioned by Sporting Clays NSW (SC NSW) to undertake a Baseline Contamination Assessment (Baseline Assessment) of the site identified as the Bermagui Sporting Clays (BSC) club grounds located at Lot 101, Murrah River Road Bermagui NSW 2546 (the Site).

The Site locality and site layout, including property boundaries, are shown on Figure 1 (Appendix A).

1.1 Background

The Site occupies an area of approximately 24 hectares (ha) of mostly heavily vegetated land with several gullies and drainage lines crossing the property located in the upper reaches of the Murrah River Catchment.

Information provided to ERM indicates that the Site has been used as a venue for the completion of sporting clays competition shooting since 1998 when the club formed. Under current approvals the site is permitted to shoot for up to twelve days per year.

In 2013 BSC submitted an application to Bega Valley Shire Council (Council) to modify their existing development application (DA) to enable an additional twelve days shooting days per year for the purpose of training new and inexperienced shooters. As part of the DA process Council required the Club to undertake a baseline contamination assessment of potential contamination resulting from shooting activities undertaken within the Site.

1.2 Objectives

The overarching objectives for this Baseline Assessment were therefore to assess the concentrations of contaminants of potential concern (CoPCs) and determine the potential for complete 'source-pathway-receptor' linkages (SPR linkages) resulting from the shooting activities undertaken on the property.

Where results of the assessment indicated the presence of a complete SPR linkage, a secondary objective of this baseline assessment was to identify specific measures that may need to be undertaken to mitigate potential contamination of the Site and adjoining lands and waterways.

2. SCOPE OF WORKS

To achieve the objectives outlined above, ERM completed the following scope of works in general accordance with the requirements of the ERM (2020) SAQP (Appendix C):

- A review of previous investigations relating to the Site and its surroundings, focussing on completing a quality control assessment to consider the validity or otherwise of the data generated by those assessments;
- preparation of a Health and Safety Plan (HASP) and associated Job Hazard Analyses (JHA) for the required scope of works;
- pre-field activities including obtaining Dial before You Dig plans, review of available utility plans and utility clearance and mark out of drilling locations using a qualified underground utilities service locator;
- the collection, field screening and subsequent laboratory analysis of surface soil samples from 56 onsite and offsite locations,
- the excavation of 3 soil bores to a maximum depth of 0.5 metres below ground level (m bgl) via a hand auger and subsequent collection, field screening and analysis of soil samples to assess the potential for potential deeper contamination impacts;
- the collection and subsequent laboratory analysis of co-located surface water and sediment samples from six offsite creek and dam locations (noting the number of surface water and sediment locations were limited by those proposed in the SAQP given the prevailing dry conditions at the time of the assessment); and
- preparation of this Baseline Contamination Assessment report.

3. SITE IDENTIFICATION

The site identification information is presented within the table below:

Table 3.1 Project Site Identification

Item	Description
Site Address	Lot 101 Murrah River Road, Bermagui NSW 2546
Legal Description	Lot 1 of DP1172182
Local Government Area	Bega Valley Shire Council
Current Land Use	Recreational - Sporting Clay Shooting
Proposed Land Use	Ongoing recreational use – Sporting Clay Shooting
Geographical Co-Ordinates	36°30'39"S 150°01'31" E (Approximate centre of Site)
Site Location and Site Layout	Figure 1 and Figure 2

Site Setting, Surrounding Environment and Site History 3.1

The following table summarises the site setting information.

Table 3.2 Project Site Identification and Condition

Item	Description
Surrounding Land use & Environment	The land uses surrounding the site include: North: Murrah State Forest. South: Agricultural land, Arnolds Gully and the Murrah River. East: Murrah State Forest. West: Privately owned forest
Site Elevation	Between 90 and 35 m Australian Height Datum (AHD) generally sloping from north west to south east
Topography	As outlined above, the site generally slopes from the north west to south east Regional topography is generally comprised of undulating hills with a general slope towards the east in the direction of the Pacific Ocean. The main area utilised by the club is located on a ridge in the centre of the site which contains the club house and facilities.
Hydrology	At the time of this assessment, the Site was covered by trees / forest with several dirt tracks facilitating access through the Site. A number of gullies and ephemeral drainage lines were also identified within the site. Two main drainage lines are known to flow towards the Murrah River.
	■ During the site inspection and sampling works, surface water was not noted to be present within the site boundaries, however based on the topography of the site during periods of rainfall it is anticipated that surface water within the western portion of the Site would either infiltrate the site surface or drain into an adjacent surface water dam (located approximately 2 km upstream from the Murrah River).
	Surface waters within the eastern portion of the Site would either infiltrate the Site surface or flow offsite in the direction of Arnolds Gully and ultimately the Murrah River.

Client: Sporting Clays NSW

10 July 2020

Item	Description
Geology, Soils and Acid Sulfate Soils	According to NSW Geology Plus (accessed 30 June 2020) the site is underlain by Ordovician sedimentary rocks, which are comprised of dominantly interbedded quartz-rich sandstone, siltstone and mudstones. Approximately 200 m to the south and south east of the site is the Murrah River Flats, this area is underlain by Quaternary alluvial deposits, which are comprised of mud, silt, sand and gravel deposited by river (alluvial) systems.
Hydrogeology	Information from NSW Department of Primary Industries' and the Bureau of Meteorology groundwater bore database (http://www.bom.gov.au/water/groundwater/explorer/map.shtml) did not identify the presence of any registered bores within the site or immediately surrounding area. Given the location of the majority of the site on an elevated ridge, it is considered likely that groundwater beneath the Site is likely to be present in deeper aquifers within underlying fractured bedrock, off site to the east and south east, groundwater is likely to be present within shallow aquifers located within quaternary alluvial materials surrounding Arnolds Gully and the Murrah River.
Site History & Current Site Usage	Information provided by the client indicated that prior to formation of Bermagui Sporting Clays in 1998 and commencement of their usage of the Site for sporting clays shooting, the Site was native bushland and was used for limited agricultural (grazing) purposes. This is supported by review of available aerial photography and observations made during the site inspection and sampling works. No indications of other historical land uses or other potentially contaminating activities (such as illegal dumping) were noted during ERM's works on site. Information provided by SC NSW regarding the shooting activities undertaken at the site was as follows: "Shooting commenced in the area of the gun club in 1998 when the club formed and obtained its DA from Bega Valley Shire Council (BVSC) in 1999, allowing it to shoot on 12 days each year. This shooting was mostly along a ridge on the southern boundary of the club's land and outside the present property boundary. The club purchased its land in 2012 and has since directed its shooting activities so that lead shot does not enter adjacent land. No shooting has been undertaken within the property boundary adjacent to the north-eastern and eastern boundaries."

Client: Sporting Clays NSW

4. PREVIOUS INVESTIGATIONS

This Baseline Assessment was undertaken in consideration of the following previous reports:

- Bermagui Field and Game (2013) Soil and Water Sampling and Analysis (BFG 2013); and
- Bradshaw Geoscience Consulting (2019) Soil sampling analysis for lead contamination adjacent to the Bermagui Gun Club, Ref No 2019-001, 1st August 2019 (BGC 2019).

A summary of previous investigations is presented below.

Table 4.1 Summary of Previous Investigations

Report	Summary
BFG 2013	BFG undertook sampling at four locations within the Site including the collection of samples from a control site (where no shooting had been undertaken) to establish background levels of lead in surface soils, and within two areas of the site where shooting had occurred over the past 15 years to assess the potential for elevated lead concentrations.
	 Results of the assessment indicates that soil pH was between 5.2 – 5.3 pH and that lead concentrations in soil ranged from 15 mg/kg to 30 mg/kg which was considered indicative of background concentrations.
	 Laboratory analysis of a surface water sample collected from onsite drainage lines returned a concentration of 0.3 ug/L, being less that the adopted ANZECC Guidelines for protection of aquatic ecosystems in Fresh and Marine water environments (3.4 ug/L and 4.4 ug/L, respectively);
	 BFG concluded that concentrations of lead were not detected above the natural variability of background lead levels and that lead (in any form) is not being significantly transported from the portions of the site utilised for shooting purposes.
BGC 2019	BGC undertook an assessment of properties located adjacent to the Site to assess the potential for offsite migration of lead to be occurring. In undertaking the assessment BGC collected four soil samples in total (two targeted samples and two baseline samples).
	Analytical laboratory results of the collected samples returned lead concentrations of 97 and 162 ppm within targeted samples and 21 and 22 ppm within collected baseline samples. Based on the results of the investigation, BCG concluded that lead contamination is not being contained to the boundaries of the Site as lead concentrations are elevated on the property adjacent to the Site and that lead concentrations were therefore, in BCG's view, observed to have increased since the 2013 study.
	In undertaking a review of the BCG assessment ERM notes the following:
	The sample collection methodology and sample density were not in accordance with regulatory guideline criteria (ASC NEPM and /or the NSW EPA requirements for reporting on contaminated sites).
	 Collected samples were submitted to ALS Geochemistry laboratory instead of ALS Environmental laboratory. ERM notes that ALS Geochemistry are not NATA accredited for the required analysis.
	 Results from collected samples were compared to ANZECC 1999 guidelines which are applicable to water, not soil.
	The conclusions relating to the distribution of lead in soils both on and offsite were based on a limited data set.

5. DATA QUALITY OBJECTIVES

The ASC NEPM recommends that DQOs be implemented during the assessment of potentially contaminated sites. The DQO process described in the ASC NEPM outlines seven distinct steps to outline the project goals, decisions, constraints and an assessment of the project uncertainties and how to address these when they arise.

The site will be assessed against criteria suitable for the protection of human health and ecological receptors, as discussed in Section 6.

5.1 Step 1: State the Problem

The objective of the investigation is to assess the presence and extent of potential contamination associated with the operation of a shooting range as described within the Conceptual Site Model (CSM) presented within the ERM (2020) SAQP. As such, the primary objectives of the investigation were to:

- Assess the extent of potential contamination in soil, sediment and surface water above applicable assessment criteria;
- Assess the potentially complete pathways to on-site and off-site receptors;
- Identify potential unacceptable human health and ecological risks and recommend remedial actions if appropriate.

5.2 Step 2: Identify the Decisions

The decisions to be made based on the proposed scope of work and objectives are:

- Do contaminant concentrations in soil meet the adopted investigation criteria suitable for the protection of human health (recreational land use on-site, public open space and rural / residential land use off-site), and ecological receptors?
- Do contaminant concentrations in sediment and/or surface water indicate potential migration of contamination from soil?
- Is the data collected during this investigation sufficient to provide an assessment of the environmental condition and extent of any existing contamination to environmental media to support risk based decision making?
- Do soil impacts represent a potential risk to identified human health under a recreational land use scenario (on-site, continuation of shooting range use), public open space and rural residential land use (off-site), and ecological receptors?
- What management and/or remedial actions are best suited to mitigate potential risk to human health and the environment?

5.3 Step 3: Identify Inputs to the Decisions

The inputs required to make the above decisions are as follows:

- Identification of representative sampling locations;
- Identification of contaminants of potential concern (COPCs);
- Field screening data (eg soil type and characteristics);
- Direct observation of environmental variables including visual disturbance, colour, odours and staining in soil;
- Laboratory analytical results for the COPCs;
- Field and laboratory quality assurance/quality control data (refer to Section 6 for further details); and
- Adopted screening levels outlined in Section 6.

5.4 Step 4: Define the Study Boundaries

The spatial boundaries are shown on Figure 2, Appendix A.

The temporal period of the investigation will be from the date of commencement (May 2020) until the date of completion of the current works which are anticipated to be completed by July 2020 and as such temporal variability will not be assessed as part of this assessment.

ERM notes that based on the nature of the land uses undertaken within the Site and potential source, pathway, receptor linkages identified within the preliminary CSM, consideration of potential temporal variability is not required for the purposes of this assessment.

5.5 Step 5: Develop a Decision Rule

Laboratory analytical data will be assessed against the screening levels identified in Section 6.

Table 5.1 Decision Rules

DECISION REQUIRED TO BE MADE	DECISION RULE		
Is data acquired of acceptable quality for interpretive purposes?	 Have appropriate controls and operating procedures been used, specifically: Consistent sampling methods including appropriate decontamination procedures; Analytical techniques, both standardised method and detection limits appropriate to assessment criteria for different laboratories and for the same laboratories over time; and Relevant QA/QC parameters tested. If the criteria stated above are satisfied, the decision is Yes. If the criteria are 		
	not satisfied, the decision is No.		
2. Has a sufficiently robust CSM been established?	Interpretation of the available field observations has enabled the key source-pathway-receptor (SPR) linkages to be adequately defined in terms of the proposed land use and in accordance with the guidance established per the standards outlined in ASC NEPM (NEPC, 1999). The CSM allows risk driving pathways to be established and appropriate application of selected assessment criteria. If the criteria stated above are satisfied, the decision is Yes. If the criteria are not satisfied, the decision is No.		
3. Is the data obtained sufficient to achieve the stated objectives?	If there are exceedances of the adopted screening levels (for protection of receptors identified in the CSM for the relevant land use), are there sufficient data inputs to establish whether SPR linkages are presently complete, or may be complete in the future? If yes, the decision is Yes. Otherwise, the decision is No.		
4. Is there sufficient data (quantity and distribution) to provide preliminary identification and delineation of source areas?	Does the data set allow statistical and qualitative assessment of identified screening level exceedances to enable a preliminary delineation of associated source areas per the guidance available in ASC NEPM (NEPC, 1999)? If yes, the decision is Yes. Otherwise, the decision is No.		

5.6 Step 6: Specify the Performance or Acceptance Criteria

The acceptable limits on decision errors applied during the review of the results will be based on the Data Quality Indicators (DQIs) of precision, accuracy, representativeness, comparability and completeness in accordance with the requirements of the ASC NEPM (NEPC, 1999).

The potential for significant decision errors will be minimised by:

- Completing a robust QA/QC assessment of the validation data and application of the probability that 95% of data will satisfy the DQIs, therefore a limit on the decision error would be 5% that a conclusive statement may be incorrect;
- Assessing whether appropriate sampling and analytical density has been achieved for the purposes of providing an established status of conditions; and
- Selection of appropriate screening levels that reflect the relevant on-site and off-site land uses and environmental values. Refer to Section 6 for adopted screening levels.

5.7 Step 7: Optimise the Design for Obtaining Data

This SAQP was developed based on a review of existing information and land use (recreational; shooting range). Should field screening data gathered during this assessment indicate that the objectives of this SAQP may not be met, the sampling design (including sampling pattern, type of samples and analytes) may be adjusted accordingly (subject to client approval).

If more significant changes to the SAQP are required, these changes will be documented and discussed with relevant stakeholders

Client: Sporting Clays NSW

10 July 2020

6. ASSESSMENT CRITERIA

Based on the preliminary conceptual site model developed during preparation of the SAQP investigation data was assessed against relevant published Australian guideline values sourced from the following:

- ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 Australian and New Zealand Governments and Australian state and territory governments,
 Canberra ACT, Australia
- Australian Drinking Water Guidelines (ADWG), National Health and Medical Research Council (NHMRC) (2011).
- CSIRO (2013) Revision of the ANZECC/ARMCANZ Sediment Quality Guidelines
- NEPC (2013) National Environment Protection (Assessment of Site Contamination)
 Measure 1999, Schedule B1 Guideline on Investigation Levels for Soil and Groundwater;

The adopted screening values and the results of this screening level assessment are presented in the summary tables in *Appendix B*.

www.erm.com Version: 1.1 Project No.: 0555344 Client: Sporting Clays NSW 10 July 2020 Page 9

0555344_Bermagui_Rpt_Rev1.docx

7. INVESTIGATION METHODOLOGY

Works were generally undertaken in accordance with the ERM (2020) SAQP. ERM notes that due to site conditions during completion of investigation works, the following modifications to the proposed sampling works were noted:

- The collection of a smaller number of surface water and sediment samples and additional soil samples due to observed conditions at the site;
- modification to the proposed sample collection methodology due to site conditions varying from those expected (lack of surface water etc.) within onsite drainage lines. ERM notes that where surface waters were not present, additional surface soil locations were sampled to assess potential residual contamination within onsite drainage lines. ERM notes that the above minor modifications from the ERM (2020) SAQP are not considered to have affected the overall suitability of the collected data set. A summary of the investigation methodology is presented within the below table.

Item	Description	
Service Location	Prior to the commencement of any intrusive investigation works, service maps, DBYD searches and service provider minimum clearance requirements were used to assess for the presence of underground services and overhead power lines.	
Soil Investigation Works	 Soil investigation works were undertaken from 26 - 28 May 2020 and involved the following. Surface materials (leaves etc.) were cleared from sampling locations. Surface soil samples were generally collected from near surface (0.1 m to 0.2 m) via hand tools (stainless steel trowel). Soil sampling locations requiring collection of deeper samples were advanced via hand augering to the required depth of investigation works. Soil samples were collected as grab samples from surface materials or from the hand auger head and were directly packed into appropriately labelled, clean screw cap jars supplied by the analytical laboratory. Collected samples were packed into a chilled cooler with ice and transported under CoC conditions to an analytical laboratory NATA accredited for the required analysis Investigation locations are presented in Figure 2. 	
Soil Logging	 Soil logging was conducted by a suitably qualified and experienced ERM environmental scientist Boreholes were logged, and the following information was recorded in the field: soil/rock type, colour, grain size, sorting, angularity, inclusions, moisture conditions, staining and odour. 	
Surface Water / Sediment Sampling	 Surface water and sediment samples were collected from drainage lines located within and adjacent to the Site. Samples were collected directly from surface water and sediment and placed directly into the laboratory supplied sampling. containers using a gloved hand with surface water samples collected directly into the laboratory supplied containers by submerging below the water surface to a depth of at least 10 cm (where practicable and safe). Samples were collected to minimise disturbance to sediment to avoid excess sediment load in the surface water sample, this included the collection of surface water sample prior to the sediment sample being collected. Collected samples were packed into a chilled cooler on ice and transported under CoC conditions to an analytical laboratory NATA accredited for the required analysis. 	
QC Samples	 Quality control samples were collected in line with the DQOs and DQIs presented above and included duplicate / replicate samples, trip blank and rinsate samples. 	
Decontamination	Decontamination of all non-dedicated sampling equipment was undertaken in accordance with ERMs Standard Operating Procedures.	

7.1 Surface Soil Investigation Locations

The location of collected surface soil samples from Areas of Potential Environmental Concern (APECs) identified within the ERM (2020) SAQP were recorded using a handheld GPS (Garmin Inreach and / or Apple iPhone smartphone) are illustrated on Figure 2 and summarised within the below table.

Table 7.1 Summary of Soil Investigation Locations by APEC

APEC	Description	Investigation Locations	Location ID
1	Outside fall zones/buffer	Five investigation locations: All surface soil samples	■ SS01, SS02, SS03, SS33 and SS34
2	Indirect/incidental impact areas	Ten investigation locations: All surface soil samples	■ SS14, SS15, SS26, SS28, SS32, SS36, SS37, SS38, SS55 and SS50
3	Impact zones/fall areas	Twenty-five investigation locations: Twenty-two surface soil samples Three shallow soil bores	 \$\$04, \$\$05, \$\$06, \$\$07, \$\$08, \$\$09, \$\$10, \$\$11, \$\$12, \$\$23, \$\$16, \$\$17, \$\$18, \$\$19, \$\$20, \$\$21, \$\$22, \$\$23, \$\$24, \$\$25, \$\$41,\$\$42 and \$\$43 BH01, BH02 and BH03
4	Offsite	Five investigation locations: All surface soil samples	SS46, SS47, SS48, SS49 and SS53
5	Drainage lines and perimeter	Ten investigation locations: All surface soil samples	■ SS27, SS29, SS30, SS31, SS35, SS39, SS40, SS51, SS52 and SS54

7.2 Sediment and Surface Water Investigation Locations

The location of collected surface water and sediment samples are illustrated on Figure 2 and summarised within the below table.

Table 7.2 Summary of Sediment and Surface Water Investigation

Site Area	Sediment / Surface Water Investigation Location	Location ID
Murrah River, upstream	2 Sediment Samples2 Surface Water Samples	SED01 and SED02SW01 and SW02
Arnolds Gully	2 Sediment Samples2 Surface Water Samples	SED05 and SED06SW05 and SW06
Murrah River and Arnolds Gully convergence point	1 Sediment Sample1 Surface Water Sample	SED03SW03
Murrah River, downstream	1 Sediment Sample1 Surface Water Sample	SED04SW04

8. INVESTIGATION RESULTS

8.1 Soil Investigation

8.1.1 Field Observations

The locations of collected surface soil samples are illustrated on Figure 2 and a photographic log detailing the general condition of the site during the investigation works is provided in *Appendix E*.

During investigation works the site was observed to be primarily covered in native vegetation with a number of unsealed access tracks present throughout the Site. During surface soil sampling, the following observations were made:

- Surface soils were general comprised of topsoil which consisted of weathered bedrock silty sands;
- within low-lying areas, such as drainage lines and gullies, surface soils generally comprised sandy gravelly silts and clays that was moist and rich in organic matter; and
- during sample collection works, field screening with a calibrated PID returned concentrations ranging from 0.2 ppm – 3.7ppm (SS12 and SS13) which are not considered to be indicative of anthropogenic contamination.

8.1.2 Soil Analytical Results

Analytical results from collected surface soil samples are presented in Tables 1-3 in Appendix B.

Laboratory analysis of the vast majority of collected surface soil samples returned concentrations of all CoPCs less than LOR and/or the adopted screening criteria. The isolated exceptions to this were as follows:

- Lead which exceeded the adopted recreational screening criteria within sample SS43_0.2.
- Benzo(a)pyrene was detected at a concentration marginally exceeding the relevant Ecological Screening Level (ESL) for Urban Residential and Public Open Space within sample BH03 0.2.

A slightly elevated (in comparison to other sample results) leachable lead concentration within sample SS16_0.2 was identified. It is noted that these results do not correlate directly with the total concentrations measured. As discussed previously, there are no registered groundwater bores in the vicinity of the Site and groundwater beneath the site is likely to be present in deeper fractured bedrock. Groundwater impacts to potential receptors would therefore be most likely to occur via groundwater discharges to nearby surface water bodies. ERM notes that these measured concentrations are therefore considered more representative of actual exposure scenarios than the measured leachate concentrations.

Due to the isolated exceedance of lead and B(a)P identified within two of the surface soil samples analysed, ERM undertook an assessment of the 95% upper confidence limit (95% UCL) of the arithmetic mean in accordance with Section 3.2.1 of Schedule B1 to the ASC NEPM (2013). As outlined in the ASC NEPM, the 95% UCL of the arithmetic mean provides a 95% confidence level that the true population mean will be less than, or equal to, this value and was undertaken to provide a better estimation of the actual concentrations The results of the 95% UCL calculations (completed using the US EPA's ProUCL software – refer Appendix G) indicated that the 95% UCL's of the arithmetic means for both lead and B(a)P were less than the adopted assessment criteria with the following calculated 95% UCL values for on-site soils only:

- Lead 169.1 mg/kg
- B(a)P 0.662 mg/kg (noting that this is based on a relatively small dataset with a large number of non-detects).

ERM notes that as the 95% UCL average for each analyte is below the relevant screening value, none of the individual concentrations detected are more than 250% above the screening value, and that the standard deviation is less than 50% of the screening value the potential risks to identified receptors is considered low and acceptable.

It is also noted that the limited exceedances of screening values that have been identified are located within the high use areas of the site and the expected "fall zone" that was identified during the planning stage of the assessment as having a higher risk of potential impacts. There is no evidence that significant migration of these observed impacts has occurred with lead concentrations outside of the "fall zone" rapidly decreasing in samples located outside of this area.

8.2 Surface Water and Sediment Investigation

8.2.1 Field Observations

The location of collected surface water and sediment samples are illustrated on Figure 2 and a photographic log detailing the condition of the site during the investigation works is provided in *Appendix E*.

The following observations were made during sampling of surface water:

- During surface water and sediment sampling within the Murrah River approximately 0.2 m of water was present at sample locations with the water clarity being noted as clear;
- During surface water and sediment sampling within Arnolds Gully it was observed that there was approximately 0.5 – 1 m of water at the sample locations with the water being noted as turbid.

Surface water field quality parameters collected during sampling works are presented in *Table 7.1* below.

Sample ID Temp (°C) DO¹ (ppm²) **Electrical** Redox (mV) pН Conductivity (µs/cm) SW01 12.4 0.78 421.6 8.15 -163.9 SW02 11.2 5.65 554.3 7.88 -40.0 SW03 10.6 6.16 9,864 7.16 -42.7 SW04 12.1 5.52 40,062 8.03 5 SW05 12.2 5.19 32,881 7.66 -34.9 SW06 11.3 6.83 37,558 7.58 -5.9

Table 8.1 Surface Water Field Quality Parameters

8.2.2 Surface Water and Sediment Analytical Results

Surface water analytical results are presented in *Tables 3 and 4* and sediment analytical results are presented in *Tables 6 and 7* in *Appendix B*. Laboratory certificates are provided in *Appendix F*.

^{1 -} dissolved oxygen

^{2 -} parts per million

Bermagui Sporting Clays

Laboratory analysis of collected surface water and sediment samples generally returned concentrations of all CoPCs less than LOR and / or the adopted screening criteria.

The measured concentrations of lead in surface water slightly exceeded the most conservative adopted screening value (99% protection for freshwater ecosystems) in several samples including the sample collected from SW01 which was the upstream control sample collected from the Murrah River. The identified minor exceedances of this screening value are not therefore considered to be indicative of site derived impacts.

ERM notes that the LOR for B[a]P in surface water was higher than the adopted drinking water criterion. However as all PAHs in collected water samples were less than LOR, this is not considered to affect the overall reliability of the collected data set.

8.3 Quality Assurance and Quality Control – Data Usability

A review of the laboratory QA/QC data was completed by ERM. The QA/QC review indicated that results are generally within the relevant DQI acceptance screening values for the analyses conducted with the exception of the following minor exceedances of the adopted RPD acceptability screening values:

SS09 and D01_20200526 returned a RPD value of 67% for lead. ERM notes that as the concentrations of both samples were significantly less than the adopted screening criteria, this minor non-conformance is considered unlikely to have affected the suitability of the overall data set.

ERM notes that samples SS40 / Do1_20200527, BH101_0.5 / D01_2000528 and SS23 / T01_20200526 also exceeded the adopted RPD acceptance criteria for total organic carbon. As samples were collected from heterogeneous topsoil materials containing residual organic matter (leaves etc.) it is the opinion of ERM that this minor non-conformance is unlikely to have affected the overall quality of the collected data set.

9. REFINED CONCEPTUAL SITE MODEL

Based on the information obtained as part of this investigation, the preliminary CSM outlining key sources, pathways and receptors presented within the ERM (2020) SAQP has been refined and is presented within the following sections.

9.1 Potential Sources of Contamination

The potential primary sources of contamination are associated with the operation of a sporting clay club shooting range. Based on the site history and background data reviewed and ERMs professional experience, the COPCs associated with the use of the Site for sporting clays competition are considered to include the following:

Potential Source	COPC	Comment
Operation of a sporting clay club shooting range	Metals (lead, arsenic, antimony)	Shotgun loads used in sporting clays competition predominantly utilise up to 28 grams of lead (with up to 6% antimony and trace 0.1 -0.2% arsenic) shot with each pellet being 2 to 2.5 mm in diameter. Metals (Pb, Sb, As) are therefore the COPCs. The potential for lead impacts is likely to be higher in areas where targets are shot on or close to the ground.
	Polycyclic Aromatic Hydrocarbons (PAHs)	Clay targets utilised on site may have historically been manufactured with products containing concentrations of PAHs. The concentrations of PAHs are likely to have decreased to lower levels over time, and it is understood that these products have not been used in more recent years.

9.2 Potential Pathways

The primary potential exposure pathways of concern at the Site are:

- Inhalation of contaminated dust (from soils);
- Dermal contact and / or incidental ingestion with contaminated surface water and soils / sediments:
- Transport of contamination through surface water flows and transport of contamination to underlying groundwater aguifers; and
- Transport of contaminants through mechanical transport (e.g. overland flow/ erosion and transport of soil/sediments).

9.3 Potential Receptors

The identified potentially sensitive human and ecological receptors have been identified as:

- Current and future visitors and users of the shooting range;
- Workers carrying out installation or maintenance works within the site; Off-site residents (noting the nearest residence is located approximately 950 m south of the site boundary); and
- Off-site freshwater aquatic ecosystems and down gradient estuarine ecosystems.

It is noted that given the absence of registered groundwater bores on or in the vicinity of the Site, groundwater users were not considered to be a valid potential receptor.

10 July 2020

Refined Conceptual Site Model 9.4

Table 9.1 Preliminary Conceptual Site Model

Potential Sources	Potential Pathways	Potential Receptors	Complete, Potentially Complete or Incomplete SPR linkage	Comment	
Lead and benzo-a-	Inhalation of contaminated dust	 Current and future land users; and Workers carrying out installation or maintenance works within the site. 	 Incomplete – no significant source present 	 Results of site investigation works including field observations made during sample collection and analytical results from collected surface soils, 	
	Dermal contact and/or incidental ingestion of contaminated soils	 Current and future land users; and Workers carrying out installation or maintenance works within the site. 	 Incomplete – no significant source present 	surface water and sediments which returned concentrations less than LOF and / or measured background concentrations.	
pyrene impact due to operation of a sporting clay	Dermal contact and/or incidental ingestion with contaminated surface waters	 Current and future land users; and Workers carrying out installation or maintenance works within the site. 	 Incomplete – no significant source present 	 Results of the investigation indicate that there are no complete SPR linkages and therefore it is the opinion the historical and current land use 	
club shooting range	Transport of contaminated sediments by surface water flows	Off-site human and ecological sensitive receptors	 Incomplete - no evidence for significant contaminant transport off-site 	practices (sport shooting) poses a low risk of harm to identified human health and ecological receptors.	
	Overland transport of contaminants through mechanical transport	 Current and future land users; and Workers carrying out installation or maintenance works within the site. 	 Incomplete pathway - no evidence for significant contaminant transport off-site 		

Client: Sporting Clays NSW www.erm.com Version: 1.1 Project No.: 0555344 10 July 2020 Page 16

10. CONCLUSIONS

ERM was engaged by SC NSW to undertake a Baseline Assessment of the Site. ERM notes that this Baseline Assessment was undertaken in general accordance with ERM (2020) Sampling and Analysis Quality Plan (SAQP) which outlined the required Data Quality Objectives (DQO's) and field investigation methodology for this assessment.

Information provided to ERM indicated that the Site has been used as a venue for sporting clays competition shooting since 1998 when the club formed. Under current approvals the site is permitted to shoot for up to twelve days per year.

In 2013 the BSC submitted an application to Council to modify their existing DA to enable an additional twelve days shooting days per year for the purpose of training new and inexperienced shooters. As part of the DA process Council required BSC to undertake a baseline contamination assessment of potential contamination resulting from shooting activities undertaken within the Site to be undertaken.

The overarching objectives for this Baseline Assessment was therefore to assess the concentrations of contaminants of potential concern (CoPCs) and determine the potential for complete 'sourcepathway-receptor' linkages (SPR linkages) resulting from the shooting activities undertaken on the property.

To achieve the objectives outlined above, ERM completed the following scope of works in accordance with the requirements of the ERM (2020) SAQP:

- A review of previous investigations relating to the Site and its surroundings, focussing on completing a quality control assessment to consider the validity or otherwise of the data generated by those assessments;
- the collection, field screening and subsequent laboratory analysis of surface soil samples from both onsite and offsite locations,
- the excavation of soil bores to 0.5 metres below ground level (m bgl) via a hand auger and subsequent collection, field screening and analysis of soil samples to assess the potential for deeper contamination impacts;
- the collection, field screening and subsequent laboratory analysis of surface water and sediment samples from offsite creek and river locations; and
- preparation of this Baseline Contamination Assessment report including refinement of the preliminary CSM outlined within the ERM (2020) SAQP.

Results of the investigation indicated the following:

- The site was observed to be primarily covered in native vegetation with a number of unsealed access tracks present throughout the Site. During investigation works, the Murrah River was identified to contain approximately 0.2 m of water with the water clarity being noted as clear. Arnolds Gully was observed to contain approximately 0.5 – 1 m of water with the water clarity being noted as turbid. Laboratory analysis of collected surface water and sediment samples generally returned concentrations of all CoPCs less than LOR and / or the adopted screening criteria.
- The measured concentrations of lead in surface water slightly exceeded the most conservative adopted screening value (99% protection for freshwater ecosystems) in several samples including the sample collected from SW01 which was the upstream control sample collected from the Murrah River. The identified minor exceedances are not therefore considered to be related to site derived impacts.

BASELINE CONTAMINATION ASSESSMENT

Bermagui Sporting Clays

- Laboratory analysis of collected surface soil samples generally returned concentrations of all CoPCs less than the LOR and or the adopted screening criteria with only two exceptions, being lead within samples collected from SS43 (exceeding the adopted recreational criteria) and B(a)P within sample BH03 0.2 which exceeded the adopted ESLs.
- Due to the isolated exceedances of lead and B(a)P within surface soil samples, ERM undertook an assessment of the 95% upper confidence limit (95% UCL) of the arithmetic mean. The results of the 95% UCL calculations indicated that lead and B(a)P were less than the adopted assessment criteria as follows:
 - Lead 169.1 mg/kg
 - B(a)P 0.662 mg/kg.
- ERM notes that as the 95% UCL of the arithmetic mean for each analyte was below the adopted screening valueand that none of the individual concentrations reported were more than 250% of the adopted screening values the risks to identified receptors is considered low and acceptable.
- The assessment also identified that the limited impacts that are present are located within the high use areas of the site and the expected "fall zone" that was identified during the planning stage of the assessment as having a higher risk of potential impacts, there is little evidence that significant migration of these impacts has occurred with lead concentration outside of the likely fall zone rapidly decreasing in samples located outside of this area and toward the site boundary.

The preliminary CSM detailed within the ERM (2020) SAQP was updated based on field observations and laboratory analysis of collected surface soil, surface water and sediment samples collected during this investigation.

Based on the results of the refined CSM, it is the opinion of ERM that there are no complete pathways for identified potential SPR linkages and therefore it is the opinion of ERM that the historical and current land use practices (sporting clay shooting) poses no significant risks to identified human health and ecological receptors. In addition, despite the club being operational for some 30 years there is no evidence of significant migration of lead impacts from the higher impact areas within the core of the site toward the site boundary.

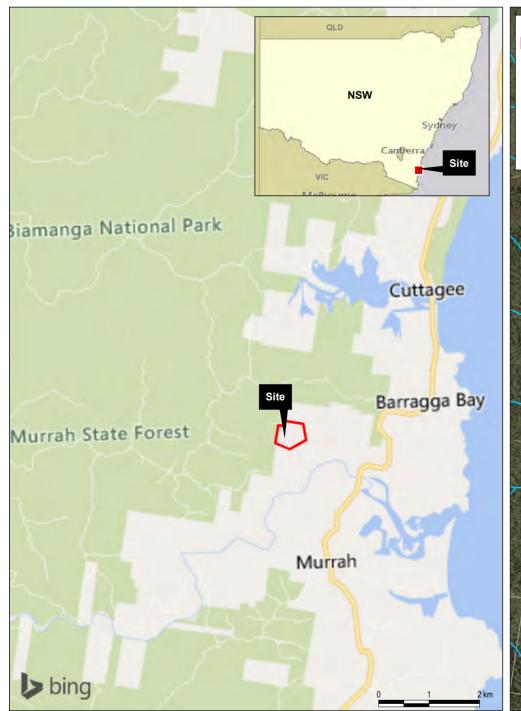
Given that no complete SPR linkages have been identified (and that the club is already operating in line with the Draft Environmental Guidelines for Shooting Ranges prepared by Sporting Clays Australia) specific measures that may need to be undertaken to mitigate potential contamination of the Site and adjoining lands and waterways have not been identified.

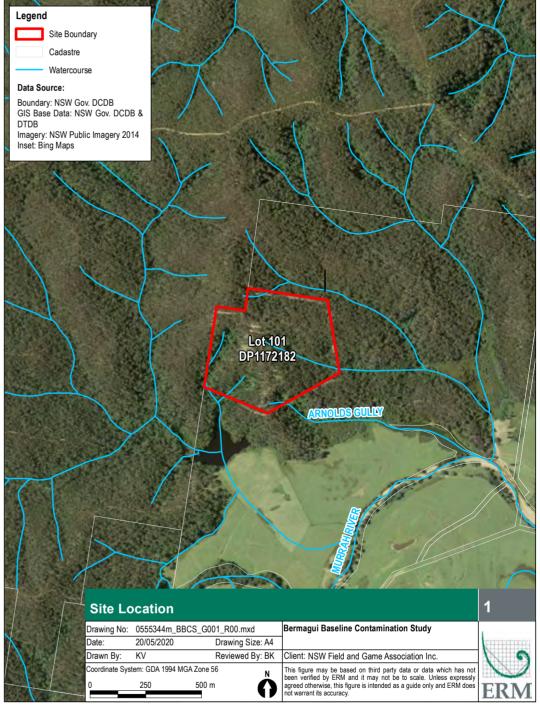
11. REFERENCES

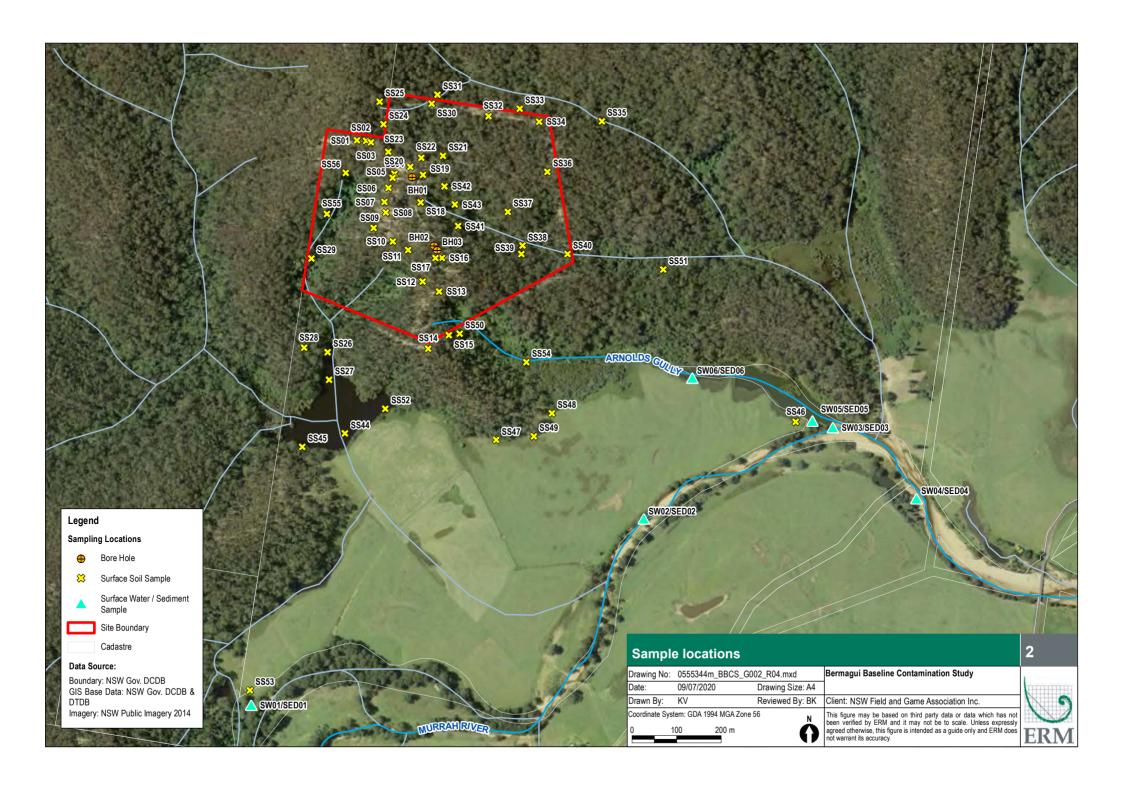
- ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 Australian and New Zealand Governments and Australian state and territory governments,
 Canberra ACT, Australia
- AS 4482.2 Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 2: Volatile Substances, Australian Standard (1999).
- AS 4482.1 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil,
 Part 2: Non-volatile and Semi-volatile compounds, Australian Standard (2005).
- Australian Drinking Water Guidelines (ADWG), National Health and Medical Research Council (NHMRC) (2011).
- Bradshaw Geoscience Consulting (2019) Soil sampling analysis for lead contamination adjacent to the Bermagui Gun Club, Ref No 2019-001, 1st August 2019 (BCG 2019); and
- Bermagui Field and Game (2013) Soil and Water Sampling and Analysis (BFG 2013).
- CSIRO (2013) Revision of the ANZECC/ARMCANZ Sediment Quality Guidelines
- ERM (2020) Sampling and Analysis Quality Plan, Bermagui Sporting Clays Baseline
 Contamination Study: Sampling Analysis and Quality Plan, 22nd May 2020 (ERM 2020).
- National Environmental Protection Council (NEPC) (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999
- NSW Environment Protection Authority (EPA) (2020) Consultants Reporting on Contaminated Land, Contaminated Land Guidelines.
- NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd edition)

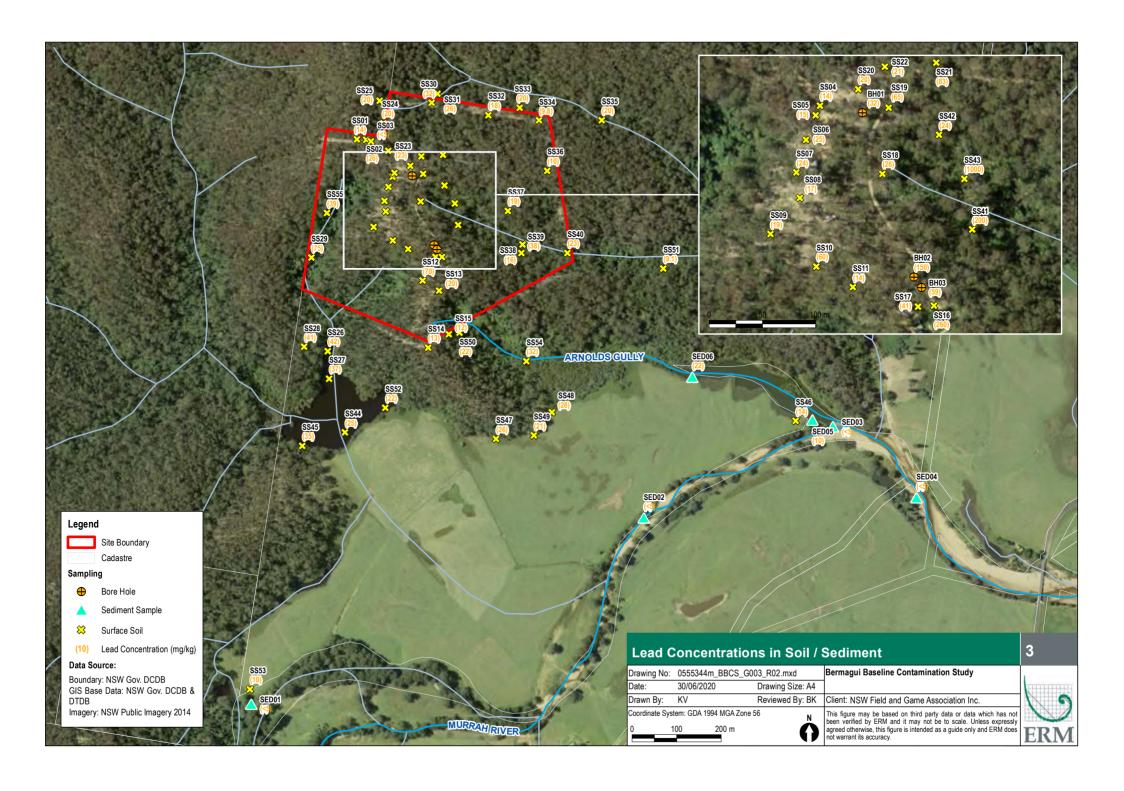
12. STATEMENT OF LIMITATIONS

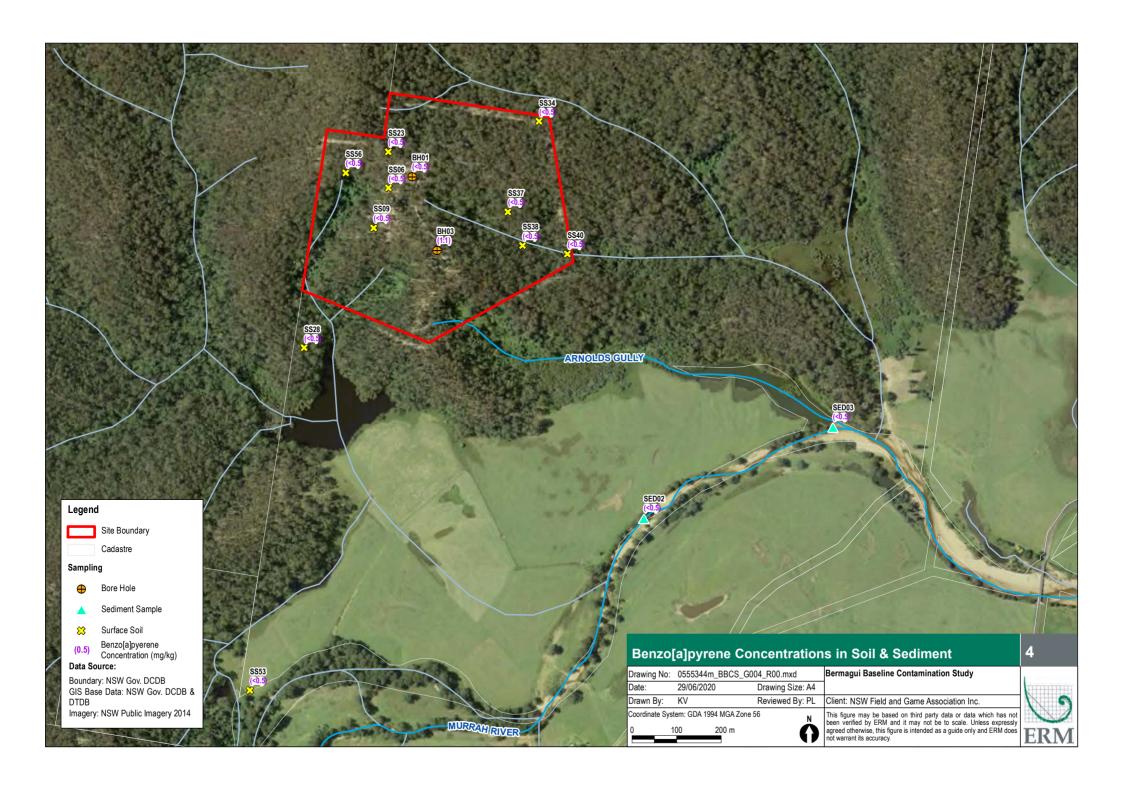
This report was prepared in accordance with the scope of work outlined within this report and subject to the applicable cost, time and other constraints. ERM performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental profession. ERM makes no warranty concerning the suitability of the Site for any purpose or the permissibility of any use, development or re-development of the Site.


Except as otherwise stated, ERM's assessment is limited strictly to identifying specified environmental conditions associated with the subject Site and does not evaluate structural conditions of any buildings on the subject Site. Lack of identification in the report of any hazardous or toxic materials on the subject Site should not be interpreted as a guarantee that such materials do not exist on the Site.


This assessment is based on Site inspection conducted by ERM personnel, sampling and analyses described in the report, and information provided by Bermagui Sporting Clays or other people with knowledge of the Site conditions. All conclusions and recommendations made in the report are the professional opinions of the ERM personnel involved with the project and, while normal checking of the accuracy of data has been conducted, ERM assumes no responsibility or liability for errors in data obtained from such sources, regulatory agencies or any other external sources, nor from occurrences outside the scope of this project.


ERM is not engaged in environmental consulting and reporting for the purpose of advertising, sales promoting, or endorsement of any client interests, including raising investment capital, recommending investment decisions, or other publicity or investment purposes.


ERM PREPARED THIS REPORT FOR THE SOLE AND EXCLUSIVE BENEFIT AND USE OF BERMAGUI SPORTING CLAYS. NOTWITHSTANDING DELIVERY OF THIS REPORT BY ERM OR BERMAGUI SPORTING CLAYS TO ANY THIRD PARTY, UNLESS OTHERWISE EXPRESSLY AGREED, ANY COPY OF THIS REPORT PROVIDED TO A THIRD PARTY IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY, WITHOUT THE RIGHT TO RELY AND ERM DISCLAIMS ALL LIABILITY TO SUCH THIRD PARTY TO THE EXTENT PERMITTED BY LAW. ANY USE OF THIS REPORT BY A THIRD PARTY IS DEEMED TO CONSTITUTE ACCEPTANCE OF THIS LIMITATION.


APPENDIX A FIGURES

APPENDIX B TABLES

		Metals	
	Antimony	Arsenic	Lead
	mg/kg	mg/kg	mg/kg
EQL	10	2	5
NEPM 2013 Table 1A(1) HILs Rec C Soil		300	600
Ecological Investigation Level (EIL) for urban residential and public open space		100	1100

Location				Lab_Report_Number			
SS01	0.1 - 0.2	Normal	26/05/2020	723044	<10	3.2	14
SS02	0.1 - 0.2	Normal	26/05/2020	723044	<10	5.6	26
SS03	0.1 - 0.2	Normal	26/05/2020	723044	<10	<2	<5
SS04	0.1 - 0.2	Normal	26/05/2020	723044	<10	9.3	14
SS05	0.1 - 0.2	Normal	26/05/2020	723044	<10	7	15
SS06	0.1 - 0.2	Normal	26/05/2020	723044	<10	4.5	25
SS07	0.1 - 0.2	Normal	26/05/2020	723044	<10	4	24
SS08	0.1 - 0.2	Normal	26/05/2020	723044	<10	4	17
SS09	0.1 - 0.2	Normal	26/05/2020	723044	<10	<2	19
SS10	0.1 - 0.2	Normal	26/05/2020	723044	<10	<2	60
SS11	0.1 - 0.2	Normal	26/05/2020	723044	<10	4.9	14
SS12	0.1 - 0.2	Normal	26/05/2020	723044	<10	16	70
SS13	0.1 - 0.2	Normal	26/05/2020	723044	<10	5.5	20
SS14	0.1 - 0.2	Normal	26/05/2020	723044	<10	5.2	13
SS15	0.1 - 0.2	Normal	26/05/2020	723044	<10	3.5	12
SS16	0.1 - 0.2	Normal	26/05/2020	723044	<10	8.8	260
SS17	0.1 - 0.2	Normal	26/05/2020	723044	<10	3.9	41
SS18	0.1 - 0.2	Normal	26/05/2020	723044	<10	3.7	26
			26/05/2020				
SS19	0.1 - 0.2	Normal	<u> </u>	723044	<10	<2	65
SS20	0.1 - 0.2	Normal	26/05/2020	723044	<10	10	20
SS21	0.1 - 0.2	Normal	26/05/2020	723044	<10	2.9	83
SS22	0.1 - 0.2	Normal	26/05/2020	723044	<10	7.4	21
SS23	0.1 - 0.2	Normal	26/05/2020	723044	<10	6	23
SS24	0.1 - 0.2	Normal	26/05/2020	723044	<10	4.1	20
SS25	0.1 - 0.2	Normal	26/05/2020	723044	<10	4.7	20
SS26	0.1 - 0.2	Normal	27/05/2020	723044	<10	5.1	42
SS27	0.1 - 0.2	Normal	27/05/2020	723044	<10	6.5	37
SS28	0.1 - 0.2	Normal	27/05/2020	723044	<10	4.7	41
SS29	0.1 - 0.2	Normal	27/05/2020	723044	<10	4.9	75
SS30	0.1 - 0.2	Normal	27/05/2020	723044	<10	8.9	32
SS31	0.1 - 0.2	Normal	27/05/2020	723044	<10	7.4	26
SS32	0.1 - 0.2	Normal	27/05/2020	723044	<10	2.7	18
SS33	0.1 - 0.2	Normal	27/05/2020	723044	<10	5.7	20
SS34	0.1 - 0.2	Normal	27/05/2020	723044	<10	2.1	9.8
SS35	0.1 - 0.2	Normal	27/05/2020	723044	<10	11	20
SS36	0.1 - 0.2	Normal	27/05/2020	723044	<10	3.9	10
SS37	0.1 - 0.2	Normal	27/05/2020	723044	<10	11	19
SS38	0.1 - 0.2	Normal	27/05/2020	723044	<10	3.3	16
SS39	0.1 - 0.2	Normal	27/05/2020	723044	<10	2.9	38
SS40	0.1 - 0.2	Normal	27/05/2020	723044	<10	3.6	23
SS41	0.1 - 0.2	Normal	27/05/2020	723044	<10	3.4	200
			· · ·				
SS42	0.1 - 0.2	Normal	27/05/2020	723044	<10	2.8	24
SS43	0.1 - 0.2	Normal	27/05/2020	723044	<10	5.4	1000
SS44	0.1 - 0.2	Normal	27/05/2020	723044	<10	3.9	25
SS45	0.1 - 0.2	Normal	27/05/2020	723044	<10	5.3	35
SS46	0.1 - 0.2	Normal	27/05/2020	723044	<10	2.9	14
SS47	0.1 - 0.2	Normal	27/05/2020	723044	<10	5.2	26
SS48	0.1 - 0.2	Normal	27/05/2020	723044	<10	7.5	28
SS49	0.1 - 0.2	Normal	27/05/2020	723044	<10	3.8	21
SS50	0.1 - 0.2	Normal	27/05/2020	724572	<10	7.2	22
SS51	0.1 - 0.2	Normal	27/05/2020	724572	<10	<2	9.1
SS52	0.1 - 0.2	Normal	27/05/2020	724572	<10	2.8	22
SS53	0.1 - 0.2	Normal	26/05/2020	724572	<10	<2	10
SS54	0.1 - 0.2	Normal	26/05/2020	724572	<10	<2	18
SS55	0.1 - 0.2	Normal	26/05/2020	724572	<10	4.2	39
SS56	0.1 - 0.2	Normal	28/05/2020	723044	<10	6.6	32
BH01	0.1 - 0.2	Normal	28/05/2020	723044	<10	4.8	32
BH01	0.4 - 0.5	Normal	28/05/2020	723044	<10	4.8	17
BH02	0.1 - 0.2	Normal	28/05/2020	723044	<10	6.8	130
BH02	0.2 - 0.3	Normal	28/05/2020	723044	<10	6.6	150
	U.S. 0.5	1.10	_ 5, 55, 2525	50		5.5	
BH03	0.1 - 0.2	Normal	28/05/2020	723044	<10	8.6	59

Statistical Summary

Number of Results	62	62	62
Number of Detects	0	55	61
Minimum Concentration	<10	<2	<5
Minimum Detect	ND	2.1	9.1
Maximum Concentration	<10	16	1000
Maximum Detect	ND	16	1000
Average Concentration	5	5.1	53
Median Concentration	5	4.75	23.5
Standard Deviation	0	2.9	130
Number of Guideline Exceedances	0	0	1
Number of Guideline Exceedances(Detects Only)	0	0	1

						Naphthalene	рН	TOC	Inorganics	РАН	AH PAH/Phenols															
					\vdash	Napitellalelle	P	1.00		IAII								1 711/1								\Box
					CEC	Naphthalene	pH (aqueous extract)	Fraction Organic Carbon	Moisture Content (dried @ 103°C)	Benzo(b&j)fluoranthene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(a)pyrene TEQ (zero)	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Phenanthrene	Pyrene	PAHs (Sum of total)
					mg/kg	mg/kg	pH Units	%	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL					0.05	0.5	0.1	0.1	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
NEPM 2013 Tab	le 1A(1) H	IILs Res A Soil														3										300
Ecological Scree	ening Leve	l (ESL) for urban	residential and public	open space											0.7											
Field ID	LocCode	e Sample Type	Sampled Date-Time	Lab_Report_Number																						
BH01 0.2	BH01	Normal	28/05/2020	723875	4.6	<0.5	5.7	2.2	4.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH01_0.5	BH01	Normal	28/05/2020	723875	3	<0.5	5.5	1.4		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
BH03 0.2	BH03	Normal	28/05/2020	723875	7	<0.5	4.9	3.2	6.1	0.8	<0.5	<0.5	<0.5	0.7	1.1	1.4	0.7	1	0.7	<0.5	0.8	<0.5	0.6	<0.5	0.8	7.2
BH03 0.5	BH03	Normal	28/05/2020	723875	5	<0.5	5.1	2.1	6.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
D01_20200526		Field D	26/05/2020	723875	13	<0.5	5.5	7.1	7.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
D01 20200527		Field D	27/05/2020	723875	4.5	<0.5	4.7	6.4	20	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
D01 20200528	_	Field D	28/05/2020	723875	3.7	<0.5	5.5	0.9	5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SS06	SS06	Normal	26/05/2020	723875	2.2	<0.5	5.5	1.2	5.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SS09	SS09	Normal	26/05/2020	723875	13	<0.5	5.4	7.2	7.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SS23	SS23	Normal	26/05/2020	723875	5	<0.5	5.3	4.2	6.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SS28	SS28	Normal	27/05/2020	723875	6.5	<0.5	5.2	6.6	21	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SS34	SS34	Normal	27/05/2020	723875	2.5	<0.5	4.5	4.2	8.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SS37	SS37	Normal	27/05/2020	723875	2.9	<0.5	4.8	3.3	13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SS38	SS38	Normal	27/05/2020	723875	4.3	<0.5	4.5	4.1		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SS40	SS40	Normal	26/05/2020	723875	5	<0.5	4.9	18	19	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
SS53	SS53	Normal	26/05/2020	723875	11	<0.5	5.4	3.4	14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
SS56	SS56	Normal	26/05/2020	723875	4.2	<0.5	4.8	5.4		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
		ittorina	120/03/2020	1723073	1.2	10.5	1.0	3.1	13	10.5	10.3	10.5	10.5	10.5	10.5	10.5	10.3	10.5	10.5	10.3	10.3	10.5	10.5	10.5	10.5	10.5
Statistical Sumn						.=		T	4.5	.=				1												1.5
Number of Resu					17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
Number of Dete					17	0	17	17	17	1	0	0	0	1	1	1	1	1	1	0	1	0	1	0	1	1
Minimum Conce					2.2	<0.5	4.5	0.9		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Minimum Detec					2.2	ND	4.5	0.9	4.9	0.8	ND	ND	ND	0.7	1.1	1.4	0.7	1	0.7	ND	0.8	ND	0.6	ND	0.8	7.2
Maximum Conce					13	<0.5	5.7	18	21	0.8	<0.5	<0.5	<0.5	0.7	1.1	1.4	0.7	1	0.7	<0.5	0.8	<0.5	0.6	<0.5	0.8	7.2
Maximum Detec					13	ND	5.7	18	21	0.8	ND	ND	ND	0.7	1.1	1.4	0.7	1	0.7	ND	0.8	ND	0.6	ND	0.8	7.2
Average Concen					5.7	0.25	5.1	4.8	10	0.28	0.25	0.25	0.25	0.28	0.3	0.32	0.28	0.29	0.28	0.25	0.28	0.25	0.27	0.25	0.28	0.66
Median Concent					4.6	0.25	5.2	4.1	7.6	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Standard Deviat					3.4	0	0.38	4	5.9	0.13	0	0	0	0.11	0.21	0.28	0.11	0.18	0.11	0	0.13	0	0.085	0	0.13	1.7
Number of Guid					0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Number of Guid	leline Exce	edances(Detect	s Only)		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0

	Metals
	Lead
	μg/L
EQL	10

Field_ID	LocCode	Sample_Type	Sampled_Date-Time	Lab_Report_Number	
SS09_0.2	SS09	Normal	26/05/2020	726119	20
SS10_0.2	SS10	Normal	26/05/2020	726119	80
SS12_0.2	SS12	Normal	26/05/2020	726119	40
SS16_0.2	SS16	Normal	26/05/2020	726119	210
SS21_0.2	SS21	Normal	26/05/2020	726119	10
SS26_0.2	SS26	Normal	26/05/2020	726119	<10
SS29_0.2	SS29	Normal	26/05/2020	726119	20
SS40_0.1	SS40	Normal	26/05/2020	726119	<10
SS41_0.2	SS41	Normal	26/05/2020	726119	30
SS43_0.2	SS43	Normal	26/05/2020	726119	60
SS50_0.1	SS50	Normal	26/05/2020	726119	10
BH01_0.5	BH01	Normal	26/05/2020	726119	20
D01_20200526	SS09	Field_D	26/05/2020	726119	<10
D01_20200527	SS40	Field_D	26/05/2020	726119	<10
D01_20200528	BH01	Field_D	26/05/2020	726119	10

Statistical Summary

Number of Results	15
Number of Detects	11
Minimum Concentration	<10
Minimum Detect	10
Maximum Concentration	210
Maximum Detect	210
Average Concentration	35
Median Concentration	20
Standard Deviation	53
Number of Guideline Exceedances	0
Number of Guideline Exceedances(Detects Only)	0

		Metal	S
	Antimony (Filtered)	Arsenic (Filtered)	Lead (Filtered)
	μg/L	μg/L	μg/L
EQL	5	1	1
ANZG 95% Protection freshwater*		13	1
ANZG 95% Protection Marine Water*			2.2
Austrlian Drinking Water Guidelines	3	10	10

Field ID LocCode Sample Type Sampled Date-Time Lab Repo	bort Number
---	-------------

SW01	SW01	Normal	26/05/2020	724572	<5	<1	3
SW02	SW02	Normal	26/05/2020	724572	<5	<1	<1
SW02	SW02	Normal	27/05/2020	723875	-	-	-
SW03	SW03	Normal	26/05/2020	724572	<5	<1	1
SW03	SW03	Normal	27/05/2020	723875	-	-	-
SW04	SW04	Normal	26/05/2020	724572	<5	1	2
SW05	SW05	Normal	28/05/2020	723044	<5	1	2
SW06	SW06	Normal	28/05/2020	723044	<5	1	1

Statistical Summary

Number of Results	6	6	6
Number of Detects	0	3	5
Minimum Concentration	<5	<1	<1
Minimum Detect	ND	1	1
Maximum Concentration	<5	1	3
Maximum Detect	ND	1	3
Average Concentration	2.5	0.75	1.6
Median Concentration	2.5	0.75	1.5
Standard Deviation	0	0.27	0.92
Number of Guideline Exceedances	6	0	5
Number of Guideline Exceedances(Detects Only)	0	0	5

					Naphthalene	рН	тос	PAH	PAH PAH/Phenols														
					Naphthalene	рн (Lab)	Fraction Organic Carbon	Benzo(b&j)fluoranthene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Phenanthrene	Pyrene	PAHs (Sum of total)
					μg/L	pH units	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		μg/L	μg/L	μg/L	μg/L
EQL					1	0.1	5	0.001	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		tion Freshwate				7.5-8.5																	
		tion Marine W	ater			7.5-8.5																	
Austrlian Wa	ter Drinkig C	Guidelines											0.01										
Field_ID SW02	LocCode SW02	Sample_Type	27/05/2020	ime Lab_Report_Number 723875	<1	7	14	<0.001	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
SW03	SW03	Normal	27/05/2020	723875	<1	7	11	<0.001	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Statistical Su		Normal	2770372020	723073	\ <u>1</u>	,		10.001	\±			\ <u>+</u>	12	\±	\ <u>+</u>	\ <u>+</u>	``	\ <u>+</u>	_	\ <u></u>		\±	
Number of Re	esults				2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Number of D	etects				0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Co	ncentration				<1	7	11	<0.001	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Minimum De					ND	7	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Co	ncentration				<1	7	14	<0.001	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Maximum De	etect				ND	7	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Cond	centration																						
Median Conc	entration				0.5	7	12.5	0.0005	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Standard Dev	viation																						
Number of G	uideline Exce	eedances			0	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
Number of G	uideline Exce	eedances(Detec	cts Only)		0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		Metals	
	Antimony	Arsenic	Lead
	mg/k	g mg/kg	mg/kg
QL	10	2	5
SIRO (2013) Sediment Quality Guidelines	2	20	50
SIRO (2013) Sediment Quality Guidelines - High	25	70	220

Field_ID	LocCode	Sample_Type	Sampled_Date-Time	Lab_Report_Number			
SED01	SED01	Normal	26/05/2020	724572	<10	<2	<5
SED02	SED02	Normal	26/05/2020	724572	<10	<2	<5
SED02	SED02	Normal	27/05/2020	723875	-	-	-
SED03	SED03	Normal	26/05/2020	724572	<10	<2	<5
SED03	SED03	Normal	27/05/2020	723875	-	-	-
SED04	SED04	Normal	26/05/2020	724572	<10	2.1	<5
SED05	SED05	Normal	28/05/2020	723044	<10	2.9	10
SED06	SED06	Normal	28/05/2020	723044	<10	4.7	22

Statistical Summary

Number of Results	6	6	6
Number of Detects	0	3	2
Minimum Concentration	<10	<2	<5
Minimum Detect	ND	2.1	10
Maximum Concentration	<10	4.7	22
Maximum Detect	ND	4.7	22
Average Concentration	5	2.1	7
Median Concentration	5	1.55	2.5
Standard Deviation	0	1.5	7.9
Number of Guideline Exceedances	6	0	0
Number of Guideline Exceedances(Detects Only)	0	0	0

						Naphthalene	рН	TOC	Inorganics	PAH								PAH/P	henols							
			Guidelines - Low Guidelines - High		mg/kg 0.05	Mg/kg 0.5	pH (adneons extract) 0.1	.0 % Fraction Organic Carbon	1 % Moisture Content (dried @ 103°C)	O B Benzo(b&j)fluoranthene	Mg/kg 0.5	G M Acenaphthylene	Mg/kg 0.5	mg/kg 0.5	mg/kg 0.5 430	O. D. Benzo(a)pyrene TEQ (zero)	S Benzo(g,h,i)perylene	O. D. Benzo(k)fluoranthene	mg/kg 0.5	O. de mark and blanthracene galaxies.	Mg/kg 0.5	mg/kg 0.5	O S Indeno(1,2,3-c,d)pyrene	mg/kg 0.5	mg/kg 0.5	mg/kg 0.5
C5INO (2013) 3	cumici	it Quality	Guidelines - High												1000											
Field_ID LocCo	ode Sa	mple_Ty	pe Sampled_Date-Tim	e Lab_Report_Number																						
SED01 SED0)1 No	ormal	26/05/2020	724572	-	-	-	-	21	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED02 SED0)2 No	ormal	26/05/2020	724572	-	-	-	-	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED02 SED0)2 No	ormal	27/05/2020	723875	0.9	<0.5	6.1	<0.1	18	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SED03 SED0)3 No	ormal	26/05/2020	724572	-	-	-	-	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED03 SED0)3 No	ormal	27/05/2020	723875	0.63	<0.5	6.7	<0.1	19	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SED04 SED0)4 No	ormal	26/05/2020	724572	-	-	-	-	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED05 SED0)5 No	ormal	28/05/2020	723044	-	-	-	-	66	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SED06 SED0)6 No	ormal	28/05/2020	723044	-	-	-	-	63	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Statistical Sum	•																									
Number of Res					2	2	2	2	8	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Number of Det					2	0	2	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Cond		on			0.63	<0.5	6.1	<0.1	15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Minimum Dete					0.63	ND	6.1	ND	15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Maximum Cond		ion			0.9	<0.5	6.7	<0.1	66	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Maximum Dete	ect				0.9	ND	6.7	ND	66	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average Conce	ntration	า							30																	
Median Concer	ntration	1			0.765	0.25	6.4	0.05	18.5	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Standard Devia	ation								22																	
Number of Gui	deline E	xceedan	ces		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Gui	deline E	exceedan	ces(Detects Only)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Field Blanks (SOIL)

Filter: SDG in('29 May 2020','04 Jun 2020','10 Jun 2

SDG	29-May-20	29-May-20
Field ID	TB (1)	TB (2)
Sampled_Date/Time	27/05/2020	27/05/2020
Sample Type	Trip_B	Trip_B

Method_Type	ChemName	Units	EQL		
Heavy Metal	Antimony	mg/kg	10		
	Arsenic	mg/kg	2		
	CEC	mg/kg	0.05		
	Lead	mg/kg	5		
Inorganic	Fraction Organic Carbon	%	0.1		
	Moisture Content (dried @ 103°C)	%	1		
	pH (aqueous extract)	pH units	0.1		
	,	İ			
Organic	TRH C6-C10	mg/kg	20	<20	<20
Ü	Naphthalene	mg/kg	0.5	<0.5	<0.5
	TRH C6-C9	mg/kg	20	<20	<20
	TRH C6-C10 less BTEX (F1)	mg/kg	20	<20	<20
PAH	Acenaphthene	mg/kg	0.5		
	Acenaphthylene	mg/kg	0.5		
	Anthracene	mg/kg	0.5		
	Benz(a)anthracene	mg/kg	0.5		
	Benzo(a) pyrene	mg/kg	0.5		
	Benzo(a)pyrene TEQ (zero)	mg/kg	0.5		
	Benzo(b&j)fluoranthene	mg/kg	0.5		
	Benzo(g,h,i)perylene	mg/kg	0.5		
	Benzo(k)fluoranthene	mg/kg	0.5		
	Chrysene	mg/kg	0.5		
	Dibenz(a,h)anthracene	mg/kg	0.5		
	Fluoranthene	mg/kg	0.5		
	Fluorene	mg/kg	0.5		
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.5		
	Naphthalene	mg/kg	0.5		
	Phenanthrene	mg/kg	0.5		
	Pyrene	mg/kg	0.5		
	PAHs (Sum of total)	mg/kg	0.5		
	(34 6. 16.4.)				
Volatile	Benzene	mg/kg	0.1	<0.1	<0.1
210000	Toluene	mg/kg	0.1	<0.1	<0.1
	Ethylbenzene	mg/kg	0.1	<0.1	<0.1
	Xylene (o)	mg/kg	0.1	<0.1	<0.1
	Xylene (m & p)	mg/kg	0.2	<0.2	<0.2
	Xylene Total	mg/kg	0.3	<0.3	<0.3

Field Dupli Filter: SDG	cates (SOIL i in('29 May		SDG Field ID Sampled Date/Time	29-May-20 SS09_0.2 26/05/2020	DOI_20200526	RPD	29-May-20 SS40_0.1 27/05/2020	29-May-20 DOI_20200527 27/05/2020	RPD	29-May-20 BH01_0.5 28/05/2020	29-May-20 DOI_20200528 28/05/2020		4-Jun-20 SS09 26/05/2020	4-Jun-20 D01_20200526 26/05/2020	RPD	4-Jun-20 SS40 26/05/2020	4-Jun-20 D01_20200527 26/05/2020	RPD	4-Jun-20 BH01_0.5 28/05/2020		8 RPD
Method_T	ChemNam	Units	EQL																		
ASLP (lead	Final pH	pH_Units	0.1																		
	Initial pH	pH_Units	0.1																		
	Leachate F	mg/l																			
	pH (Leach	pH units	0.1																		
ched)																					
Heavy Met	CEC	mg/kg	0.05 (Primary): 0.1 (Inte	erlab)									13.0	13.0	0	5.0	4.5	11	3.0	3.7	21
al																					
Inorganic	Fraction O	%	0.1 (Primary): 0.5 (Inter	rlab)									7.2	7.1	1	18.0	6.4	95	1.4	0.9	43
	pH (aqueo		0.1										5.4	5.5	2	4.9	4.7	4	5.5	5.5	0
PAH	Naphthaler	mg/kg	0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	•																				
Inorganic	Moisture C	%	1	8.2	8.7	6	23.0	19.0	19	4.7	5.2	10	7.5	7.6	1	19.0	20.0	5	5.0	5.0	0
Heavy Met	Antimony	mg/kg	10	<10.0	<10.0	0	<10.0	<10.0	0	<10.0	<10.0	0									
		mg/kg	2	<2.0	<2.0	0	3.6	4.2	15	4.8	5.0	4									
		mg/kg	5	19.0	38.0	67	23.0	31.0	30	17.0	17.0	0									
al		0 0																			
Heavy Met	Lead	μg/l	10																		
al (leached		1 0																			
	Benzo(b&j)	mg/kg	0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Acenaphth		0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Acenaphth		0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Anthracene		0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Benz(a)ant		0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo(a) p		0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo(a)py		0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo(g,h,		0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Benzo(k)flu		0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Chrysene	ma/ka	0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Dibenz(a,h	mg/kg	0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Fluoranthe	mg/kg	0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Fluorene		0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Indeno(1,2		0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	Phenanthre		0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
			0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0
	PAHs (Sur		0.5										<0.5	<0.5	0	<0.5	<0.5	0	<0.5	<0.5	0

Environmental Resources Management Australia Pty Ltd. 1 of 2

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 100 (1-5 x EQL); 40 (5-10 x EQL); 40 (> 10 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Field Duplic Filter: SDG	in('29 [°] May	SDG Field ID Sampled Date/Time	17-Jun-20 SS09 26/05/2020	17-Jun-20 D01_20200526 26/05/2020		17-Jun-20 SS40 26/05/2020		RPD	17-Jun-20 BH01_0.5 26/05/2020	17-Jun-20 D01_20200528 26/05/2020	RPD		ALSE-Sydney 04-Jun-20 T01_20200526 26/05/2020	RPD		ALSE-Sydney 04-Jun-20 T01_20200527 26/05/2020	RPD
Method_T	ChemNam Units	EQL															
ASLP (lead	Final pH pH_Units	0.1	5.6	5.7	2	5.4	5.1	6	5.5	5.7	4						
,	Initial pH pH_Units	0.1	5.7	5.6	2	5.6	5.5	2	5.8	5.8	0						
	Leachate Fmg/l		4.0	4.0	0	4.0	4.0	0	4.0	4.0	0						
	pH (LeachapH units	0.1	5.9	5.9	0	5.9	5.9	0	5.9	5.9	0						
ched)																	
Heavy Met	CEC mg/kg	0.05 (Primary): 0.1 (Inte	el .									5.0	5.6	11	11.0	10.2	8
:al																	
		0.1 (Primary): 0.5 (Inter	li									4.2	2.8	40	3.4	3.3	3
	pH (aqueorpH units	0.1															
PAH	Naphthaler mg/kg	0.5										<0.5	<0.5	0	<0.5	<0.5	0
Inorganic	Moisture C %	1															
	A ()	10															
	Antimony mg/kg	10															
	Arsenic mg/kg	2															
	Lead mg/kg	5															
:al		40	00.0	.10.0	07	110.0	:10.0		00.0	40.0	07						
Heavy Met		10	20.0	<10.0	67	<10.0	<10.0	0	20.0	10.0	67						
:al (leached)		0.5										10.5	10.5	_	10.5	10.5	
		0.5										< 0.5	<0.5	0	<0.5	<0.5	0
	Acenaphth mg/kg	0.5										<0.5	<0.5	0	< 0.5	<0.5	0
	Acenaphth mg/kg	0.5										<0.5	<0.5 <0.5	0	<0.5	<0.5	0
	Anthracene mg/kg	0.5										<0.5		0	<0.5	<0.5	0
	Benz(a) ant mg/kg	0.5 0.5										<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Benzo(a) p mg/kg													0			0
	Benzo(a)pymg/kg Benzo(g,h,mg/kg	0.5 0.5	 								 	<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
	Benzo(g,n,mg/kg Benzo(k)flumg/kg	0.5	 									<0.5	<0.5	0	<0.5	<0.5 <0.5	0
	Chrysene mg/kg	0.5	 									<0.5	<0.5	0	<0.5	<0.5 <0.5	0
			1											_			0
		0.5	1									<0.5 <0.5	<0.5 <0.5	0	<0.5 <0.5	<0.5 <0.5	0
		0.5	 									<0.5	<0.5	0	<0.5	<0.5 <0.5	0
		0.5	 									<0.5	<0.5	0	<0.5	<0.5	0
		0.5	1									<0.5	<0.5	0	<0.5	<0.5	0
		0.5	1									<0.5	<0.5	0	<0.5	<0.5	0
		0.5	1									<0.5	<0.5	0	<0.5	<0.5	0
	, ,	ed where a concentration										٧٥.٥	٠٠.٥	U	٧٠.٥	70.0	U

^{*}RPDs have only been considered where a concentration i *High RPDs are in bold (Acceptable RPDs for each EQL

Environmental Resources Management Australia Pty Ltd. 2 of 2

^{***}Interlab Duplicates are matched on a per compound ba

APPENDIX C SAQP

www.erm.com Version: 1.1 Project No.: 0555344 Client: Sporting Clays NSW 10 July 2020

Level 15 309 Kent Street Sydney NSW 2000 Telephone: +61 2 8584 8888

www.erm.com

Mr Andrew Fairfield Smith President Sporting Clays NSW via Email nswscapresident@gmail.com

1 July 2020

Reference: 0555344 Bermagui Sporting Clays Baseline Contamination Study: Sampling Analysis and Quality Plan (SAQP)

Dear Andrew,

1. INTRODUCTION

Environmental Resources Management Australia Pty Ltd (ERM) was commissioned by Sporting Clays NSW (SC NSW) to prepare a sampling and analysis quality plan (SAQP) to guide a baseline contamination study of the Bermagui Sporting Clays (BSC) gun club grounds at 3200 Tathra- Bermagui Road, Murrah NSW 2546 (the Site).

2. SITE DESCRIPTION

The Site is located at 3200 Tathra- Bermagui Road, Murrah NSW 2546 and is formally identified as Lot 101 of DP1172182. The Site has been used as a venue for the completion of sporting clays competition shooting and is currently permitted to shoot on 12 days per year under an existing Development Application (DA) from Bega Valley Shire Council (Council).

The Site occupies an area of 24.35 hectares (ha) of mostly heavily vegetated land located in the upper reaches of the Murrah River Catchment and exhibits some steep topography with several gullies and drainage lines crossing the property.

3. OBJECTIVES

The primary objective of the baseline contamination study is to assess the level of contaminants of concern and determine if there are any complete 'source-pathway-receptor' scenarios resulting from the shooting activities undertaken on the property. The secondary objective is to identify specific measures that may need to be undertaken to mitigate potential contamination of the Site and adjoining lands and waterways.

4. CONCEPTUAL SITE MODEL

4.1 Overview

The development of a Conceptual Site Model (CSM) is the fundamental step that describes exposure pathways between the source of contamination and the receptor. The linkages between these elements in the CSM examines if a complete, potential or incomplete exposure pathway exists. The status of the exposure pathway determines the presence of risk to environment and/or human health. A preliminary CSM is presented in Table 4.1 based on a review of the available information.

4.2 Potential Sources of Contamination

The potential primary sources of contamination are associated with the operation of a sporting clay club shooting range.

ERM understands that sporting clays is a discipline of competitive shotgun shooting designed primarily to simulate hunting situations by using clay targets thrown in a variety of presentations including (but not limited to) incoming, outgoing, overhead, crossing, chandelle (looping), springing 'teal' and rolling 'rabbit' style targets. These various presentations mean that, upon firing, the shot can be propelled by the shotgun away from the firing position at a variety of trajectories ranging from almost vertically upward (in the case of overhead targets) to angling downward into the ground in front or to the side of the firing position (in the case of rabbit targets for example). As such, the range of dispersion of shot from the firing position varies considerably but is generally limited to a maximum of 300 - 400 m.

Based on the site history and background data reviewed and ERMs professional experience, the Potential Contaminants of Concern (PCOC) associated with current and historical land uses undertaken in the general area are considered to include the following:

Potential Source	PCOC	Comment
Operation of a sporting clay club shooting range	Metals (lead, arsenic, antimony)	Shotgun loads used in sporting clays competition predominantly utilise up to 28 grams of lead (with up to 6% antimony and trace 0.1 -0.2% arsenic) shot with each pellet being 2 to 2.5 mm in diameter. Metals (Pb, Sb, As) are therefore the PCOCs. The potential for lead impacts is likely to be higher in areas where targets are shot on or close to the ground.
	Polycyclic Aromatic Hydrocarbons (PAHs)	Clay targets utilised on site may have historically been treated with products containing concentrations of PAHs. The concentrations of PAHs are likely to have decreased to lower levels over time, and it is understood that these products have not been used in more recent years.

ERM	1 JULY 2020
	PAGE 3 OF 12

4.3 Potential Pathways

The primary potential exposure pathways of concern at the Site are:

- Inhalation of contaminated dust (from soils);
- Dermal contact and / or incidental ingestion with contaminated surface water and soils / sediments;
- Transport of contamination through surface water flows;
- Transport of contamination to underlying groundwater aquifers; and
- Transport of contaminants through mechanical transport (e.g. overland flow/ erosion and transport of soil/sediments).

4.4 Potential Receptors

The identified potentially sensitive human and ecological receptors have been identified as:

- Current and future visitors and users of the shooting range;
- Off-site groundwater users and potential future users of groundwater;
- Workers carrying out installation or maintenance works within the site; Off-site residents;
 and
- On-site and off-site freshwater aquatic ecosystems and down gradient estuarine ecosystems.

4.5 Preliminary Conceptual Site Model

Table 4-1 Preliminary Conceptual Site Model

Potential Sources	Potential Pathways	Potential Receptors	Risk of Potentially Complete Pollutant Linkage	Comment
	Inhalation of contaminated dust	 Current and future land users; and Workers carrying out installation or maintenance works within the site. 	High	Potential inhalation of dust and dermal contact/ ingestion with contaminated surface waters/soils is considered moderate – high as the site is
	Dermal contact and/or incidental ingestion of contaminated soils	 Current and future land users; and Workers carrying out installation or maintenance works within the site. 	Moderate	unsealed and contamination related to the shooting activities on Site are likely to have resulted in impacts to surface
Operation of a sporting clay club	Dermal contact and/or incidental ingestion with contaminated surface waters	 Current and future land users; and Workers carrying out installation or maintenance works within the site. 	Moderate	 soils. ERM notes that where intrusive works/ redevelopment occurs the potential for
shooting range	Transport of contaminated sediments by surface water flows	Off-site human and ecological sensitive receptors	High	dermal contact with soils should be considered.
	Migration of contamination from soil to underlying groundwater aquifers	 Off-site users of groundwater; Aquatic ecosystems receiving groundwater; and Future potential onsite users of groundwater. 	Low-moderate	
	Overland transport of contaminants through mechanical transport	 Current and future land users; and Workers carrying out installation or maintenance works within the site. 	Moderate	

5. DATA QUALITY OBJECTIVES

5.1 Overview

The ASC NEPM (NEPC, 1999) recommends that DQOs be implemented during the assessment of potentially contaminated sites. The DQO process described in the ASC NEPM (NEPC, 1999) outlines seven distinct steps to outline the project goals, decisions, constraints and an assessment of the project uncertainties and how to address these when they arise.

The site will be assessed against criteria suitable for the protection of human health and ecological receptors, as discussed in Section 7.

5.2 Step 1: State the Problem

The objective of the investigation is to assess the presence and extent of contamination associated with the operation of a shooting range. As such, the technical objectives of the investigation will be to:

- Assess the extent of contamination in soil, sediment and surface water above applicable assessment criteria;
- Assess the potentially complete pathways to on-site and off-site receptors;
- Identify potential unacceptable human health and ecological risks and recommended remedial actions.

5.3 Step 2: Identify the Decisions

The decisions to be made based on the proposed scope of work and objectives are:

- Do contaminant concentrations in soil meet the adopted investigation criteria suitable for the protection of human health (recreational land use on-site, public open space and rural / residential land use off-site), and ecological receptors?
- Do contaminant concentrations in sediment and/or surface water indicate potential migration of contamination from soil?
- Is the data collected during this investigation sufficient to provide an assessment of the environmental condition and extent of any existing contamination to environmental media to support risk based decision making?
- Do soil impacts represent a potential risk to identified human health under a recreational land use scenario (on-site, continuation of shooting range use), public open space and rural residential land use (off-site), and ecological receptors?
- What management and/or remedial actions are best suited to mitigate potential risk to human health and the environment?

5.4 Step 3: Identify Inputs to the Decisions

The inputs required to make the above decisions are as follows:

- Identification of representative sampling locations;
- Identification of contaminants of potential concern (COPCs);
- Soil field screening data (soil type and characteristics);

ERM	1 JULY 2020
	PAGE 6 OF 12

- Direct observation of environmental variables including visual disturbance, odours and staining in soil;
- Laboratory analytical results for the COPCs;
- Field and laboratory quality assurance/quality control data (refer to Section 6 for further details); and
- Adopted screening levels outlined in Section 7.

5.5 Step 4: Define the Study Boundaries

The spatial boundaries are shown on Figure 1, Appendix A.

The temporal period of the investigation will be from the date of commencement (May 2020) until the date of completion of the current works which are anticipated to be completed by July 2020.

5.6 Step 5: Develop a Decision Rule

Laboratory analytical data will be assessed against the screening levels identified in Section 7.

Table 5.1: Decision Rules

DECISION REQUIRED TO	DECISION RULE
BE MADE	DECISION ROLE
Is data acquired of acceptable quality for interpretive purposes?	 Have appropriate controls and operating procedures been used, specifically: Consistent sampling methods including appropriate decontamination procedures; Analytical techniques, both standardised method and detection limits appropriate to assessment criteria for different laboratories and for the same laboratories over time; and Relevant QA/QC parameters tested. If the criteria stated above are satisfied, the decision is Yes. If the criteria are not satisfied, the decision is No.
2. Has a sufficiently robust CSM been established?	Interpretation of the available field observations has enabled the key source-pathway-receptor (SPR) linkages to be adequately defined in terms of the proposed land use and in accordance with the guidance established per the standards outlined in ASC NEPM (NEPC, 1999). The CSM allows risk driving pathways to be established and appropriate application of selected assessment criteria. If the criteria stated above are satisfied, the decision is Yes. If the criteria are not satisfied, the decision is No.
3. Is the data obtained sufficient to delineate the extent of contamination?	If there are exceedances of the adopted screening levels (for protection of receptors identified in the CSM for the relevant land use), are there sufficient data inputs to the CSM to establish whether SPR linkages are presently complete, or may be complete in the future? Has a significant risk been realised per ASC NEPM (NEPC, 1999)?
4. Is there sufficient data (quantity and distribution) to provide preliminary identification and delineation of source areas?	Does the data set allow statistical and qualitative assessment of identified screening level exceedances to enable a preliminary delineation of associated source areas per the guidance available in ASC NEPM (NEPC, 1999)? If yes, the decision is Yes. Otherwise, the decision is No.

ERM	1 JULY 2020
	PAGE 7 OF 12

5.7 Step 6: Specify the Performance or Acceptance Criteria

The acceptable limits on decision errors applied during the review of the results will be based on the Data Quality Indicators (DQIs) of precision, accuracy, representativeness, comparability and completeness in accordance with the requirements of the ASC NEPM (NEPC, 1999).

The potential for significant decision errors will be minimised by:

- Completing a robust QA/QC assessment of the validation data and application of the probability that 95% of data will satisfy the DQIs, therefore a limit on the decision error would be 5% that a conclusive statement may be incorrect;
- Assessing whether appropriate sampling and analytical density has been achieved for the purposes of providing an established status of conditions; and
- Selection of appropriate screening levels that reflect the relevant on-site and off-site land uses and environmental values. Refer to Section 7 for adopted screening levels.

5.8 Step 7: Optimise the Design for Obtaining Data

This SAQP has been developed based on a review of existing information and land use (recreational; shooting range). Should field screening data gathered during this assessment indicate that the objectives of this SAQP may not be met, the sampling design (including sampling pattern, type of samples and analytes) may be adjusted accordingly (subject to client approval).

If more significant changes to the SAQP are required, these changes will be documented and discussed with relevant stakeholders.

SCOPE OF WORK/METHODOLOGY

6.1 Overview

Preliminary tasks will include:

- Preparation of a Health and Safety Plan (HASP);
- Review of previous investigations relating to the Site and its surroundings;
- An initial Site Inspection;
- Preparation of this Sampling and Analysis Quality Plan (SAQP), which will be provided to SC NSW prior to commencing work. No further works will be undertaken until all relevant stakeholders are satisfied that the proposed scope of works is sufficient to meet the project requirements.

Further detail on the scope of works and methodology is provided in the following sections, in summary, the scope of works for the investigation will include:

- Collection of surface soil samples from 0.1-0.2 m bgl to assess for impacts to surface soils;
- Collection of soil samples using a hand auger to approximately 0.5 m bgl to assess for the potential of deeper impacts at targeted locations; and
- Collection of surface water samples from creeks and dams.
- Collection of sediment samples from creeks and dams.

6.2 Soil Investigation Methodology

Prior to the commencement of intrusive works, plans will be obtained from Dial Before You Dig and subsurface services will be located and marked on the ground by ERM's private utility location subcontractor.

As any contamination related to the shooting activities on the Site are likely to have resulted in impacts to the surface soils (i.e. top 0.1-0.2 m), soil sampling will therefore primarily be undertaken via surface sampling with a smaller proportion (nominally 5%) of locations having samples collected via hand auger down to approximately 0.5 m bgl to assess the potential for deeper impacts.

The breakdown of soil sampling locations per area are summarised in Table 3-1.

Surface soil sampling will be conducted via use of hand tools only. During investigation works, all sampling locations will be logged in accordance with ERM soil logging procedures. For the purposes of this fee proposal ERM has estimated one sample analysed from each surface sampling location. All samples collected samples will be placed within laboratory-supplied containers, stored in a chilled cooler and transported to a NATA accredited laboratory analysis under chain of custody (CoC) conditions for the required analysis.

6.3 Sediment and Surface Water Methodology

Surface water and sediment samples will be collected from onsite and offsite creeks and dams (as noted in Table 3-1 and shown in Figure 2, Appendix A). Samples will be collected either directly into the sampling containers or via a hand-held sampling device (e.g. Swing Sampler) with subsequent decanting into the laboratory sampling containers. Where possible, surface water and sediment samples will be collected from co-located sampling locations and collected in a manner to minimise disturbance to sediment to avoid excess sediment load in the surface water sample, this will include collection of surface water sample at a given location, prior to the sediment sample being collected. Collected samples will be placed within laboratory-supplied containers, stored in a chilled cooler and transported to a NATA accredited laboratory analysis under CoC conditions for the required analysis.

6.4 Laboratory Analysis

The primary analytical laboratory selected for sample analysis is Eurofins|MGT. The secondary analytical laboratory selected is Australian Laboratory Services. Both laboratories are accredited by the National Association of Testing Authorities (NATA) for the analytical suites proposed.

Based on knowledge of the current and past operations, the following COPCs have been identified for the site:

- Metals (lead, arsenic, antimony); and
- PAHs.

The soil, sediment and surface water samples will be analysed for the COPCs as well as soil parameters (%clay, Cation Exchange Capacity, Total Organic Carbon and pH) to understand contaminant mobility potential, and leachability using the Australian Standard Leaching Procedure (ASLP). A summary of the proposed analytical suite is presented in *Table 6-1*, noting that this may be subject to further refinement and review following completion of the works.

6.5 Summary of Proposed Scope

A summary of the number of sampling locations per area, and the analytical suite for soil, sediment and surface water is presented in Table 6-1 below. The proposed sample locations are illustrated in Figure 2 of Appendix A. It is noted that there may be a need to relocate certain sampling locations due to access constraints etc. However where this occurs, this will be justified in the DSI report.

Table 6-1 Nominal Field Investigation Scope

Potential for impact	Area	% Property	Area (m2)	Primary Samples	Metals	РАН	Soil* Parameters	ASLP Lead	
Low	Outside fall zones / buffer	40%	97400	5	5	1	1	1	
Moderate	Indirect / incidental impact areas	40%	97400	10	10	3	3	2	
High	Impact zones / fall areas	15%	36525	20	20	5	5	5	
TBC	Offsite	N/A	N/A	5	5	2	2	2	
Moderate	Drainage Lines and perimeter	5%	12175	20 (surface water/ sediment)	20	2	20	0	
	Whole Site	100%	243500	40 surface soil 20 surface water/sediment	40 20	10 2	10 2	10 0	

^{*}Soil parameters will include %clay, Cation Exchange Capacity, Total Organic Carbon and pH

ASLP – Australian Standard Leaching Procedure

7. ASSESSMENT CRITERIA

ERM

Investigation data will be assessed against investigation criteria published in the ASC NEPM (2013) Schedule B1 Guideline on the Investigation Levels for Soil and Groundwater.

- Soil data will be assessed against the ASC NEPM (2013) Health Investigation Levels (HILs) for Recreational land-use (HIL-C); and
- Sediment and surface water data will be assessed against the ASC NEPM (2013)
 Ecological Investigation Levels (EILs).

Where no relevant Australian endorsed assessment criteria is available, reference to relevant international guidance documents will be sought. It is noted that these guideline values have no regulatory standing in NSW and hence further assessment of any exceedances of these criteria may be required.

8. QUALITY ASSURANCE QUALITY CONTROL

A number of actions, procedures, checks and decisions will be undertaken by ERM to obtain accurate and reliable analytical results and document the representativeness and integrity of samples collected in accordance with actions reference methods described in Schedules B(2) and B(3) of the ASC NEPM. *Table 2* below provides a summary of the QA/QC procedures to be followed during the baseline contamination study.

Table 2 QA/QC Procedures

QA/QC Procedure	Description
Record Keeping	Detailed records of relevant field activities will be maintained on ERMs standard field logging templates.
Sample Labelling	Unique sample numbers will be used for each sample to clearly specify the sample origin (source, date and sample type code), preservation techniques used and accepting custody of samples.
Chain of Custody	Chain of custody (COC) documentation will be used for sample transfers. COC forms will include sample numbers, description and sample date, and will be signed by the persons transferring and accepting custody of the samples.
Sample Storage	Samples will be transferred in approved sampling containers with appropriate preservation and will be placed in cool storage (target temperature at or below 6°C) prior to and during transfer to the laboratory. Samples will be shipped to the laboratory immediately after completion of the sampling program and within prescribed holding times.
Decontamination	Field equipment will be decontaminated between sampling locations (as required) using a phosphate free detergent followed by rinsing twice with potable water. Field rinsate samples will be collected from reusable sampling equipment on a daily basis to confirm the effectiveness of decontamination procedures. Rinsate samples will be analysed for COPCs representative of impacts at the site.

QA/QC Procedure	Description
QC Samples (intra-laboratory duplicates, inter-laboratory duplicate and trip blanks)	In addition to the analysis of primary samples, field duplicate samples will be analysed at a total frequency of 1:10 primary samples. Duplicate samples will be analysed for the same COPCs as the primary samples. Trip blank and spikes will be prepared by the laboratory and sampled at a rate of 1 laboratory batch per day.
Laboratory Internal QA/QC	Primary samples will be analysed by Eurofins and triplicate samples by ALS. Laboratory analytical methods to be used during the investigation are identified in the laboratory certificates of analysis. Each of these laboratories is National Association of Testing Authorities (NATA)-accredited for the analysis performed.
	Where appropriate, the laboratories will use internal standards to check the consistency of the analytical processes (e.g. injection volumes, instrument sensitivity and retention times for chromatographic systems). Sample splits and method validation processes will also be used as part of their internal QA/QC procedures

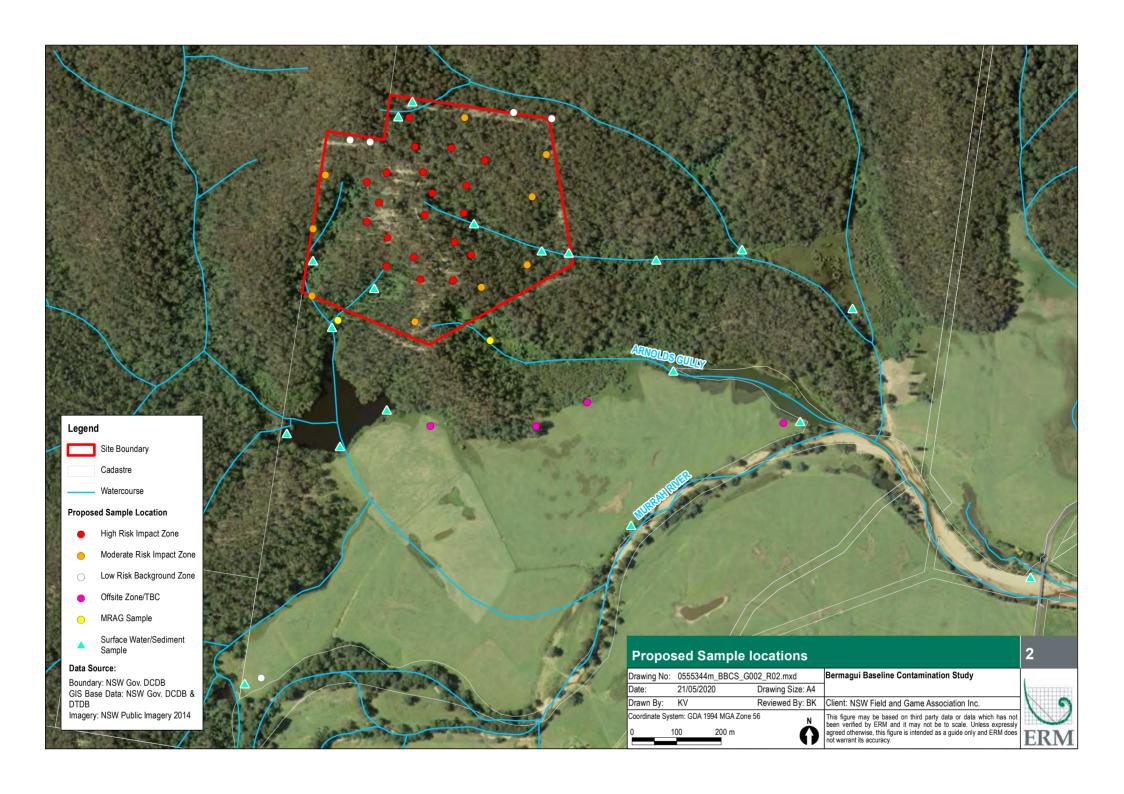
9. REPORTING

On completion of the field investigation, ERM will summarise the findings of the investigation within a detailed report. Each report will be written in accordance with the ASC NEPM and relevant NSW EPA reporting guidelines. The following will be included:

- Introduction, scope of works, methodology and sampling procedures.
- A summary of previous investigations and identified data gaps (where present) including the aforementioned assessment of data quality and validity.
- A summary of field observations, including a table summarising well conditions.
- Comparison of the laboratory test data against relevant NSW EPA made or approved assessment criteria, including the provision of summary tables.
- Revision and refinement of the CSM.
- Conclusions and recommendations (if any) including, where necessary, measures that could be undertaken to reduce the potential for further contamination of the land and adjoining lands and waterways.
- Figures showing site location and sampling locations.

Yours sincerely,

Environmental Resources Management Australia Pty Ltd


DRAFT DRAFT

Ian BatterleyPeter LavelleProject ManagerPartner

APPENDIX A - FIGURE 1 SITE LOCATION

Source: NSW Six Maps: https://maps.six.nsw.gov.au/, accessed 13/05/2020

APPENDIX D FIELD NOTES

www.erm.com Version: 1.1 Project No.: 0555344 Client: Sporting Clays NSW 10 July 2020

Location	Sample Depth	Description	PID Measurement (ppm)
		Leafy organic matter over weathered sandstone, medium to coarse grained,	
		poorly sorted, loose, dry, grey brown, sandsone fragments, roots and organic	
SS01	0.1-0.2	matter throughout.	1.3
		Leafy organic matter over weathered sandstone, light brown/orange,	
		medium to coarse grained, poorly sorted, loose, dry, sandstone fragments	
SS02	0.1-0.2	and roots throughout.	0.9
		Leafy organic matter over weathered/ crushed sandstone, light brown, dry,	
5502	0.4.0.2	loose, medium to coarse grained, poorly sorted, loose, dry, sandstone	1.0
SS03	0.1-0.2	fragments and roots throughout.	1.0
		Leafy organic matter over weathered/ crushed sandstone, light brown, loose,	
SS04	0.1-0.2	dry, medium coarse grained, poorly sorted, sandstone fragments and roots throughout.	1.8
3304	0.1-0.2	Leafy organic matter over crushed/ weathered sandstone, grey/ light brown,	1.0
		dry, loose, medium to coarse grained, moderately well sorted, sandstone,	
SS05	0.1-0.2	fragments throughout, roots throughout.	1.4
3303	0.1-0.2	Leafy organic matter over clay targets, crushed/ weathered sandstone, light	1.4
		brown, orange, dry, loose, coarse grained, poorly sorted, sandstone	
SS06	0.1-0.2	fragments throughout, roots througout.	0.5
3300	0.1 0.2	Leafy organic matter over crushed/ weathered sandstone, dry, fine to	0.5
		medium grained, poorly sorted, grey/ brown, sandstone fragments	
SS07	0.1-0.2	throughout, roots throughout	2.0
	0.2 0.2	Leafy organic matter/ vegetation over weathered/ crushed sandstone,	
		medium to coarse grained, poorly sorted, dry, loose, sandstone, fragment	
SS08	0.1-0.2	througout, roots throughout, orange.	2.9
	1		
		Leafy organic matter over loam, dark brown, loose, fine grained, moist,	
SS09	0.1-0.2	moderately sorted, roots thorughout, sandstone fragments throughout.	2.0
		Leafy organic matter over crushed/ weathered sandstone, medium brown,	
		medium-coarse grained, poorly sorted, loose, dry, sandstone fragments	
SS10	0.1-0.2	throughout, roots and organic matter throughout.	1.9
		Leafy organic matter over crushed/ weathered sandstone, light brown/	
		orange, medium to coarse grained, poorly sorted, loose, dry, moderately	
SS11	0.1-0.2	sorted, sandstone fragments throughout, roots througout.	2.9
		Leafy organic matter, orange/ light brown, loose, dry, medium grained,	
		poorly sorted, weathered/ crushed sandstone, sandstone fragments	
SS12	0.1-0.2	throughout.	3.7
		Leafy oraganic matter over brown, dry, loose, fine to medium grained,	
		organic matter and roots throughout, weathered/ crushed sandstone, poorly	
SS13	0.1-0.2	sorted	3.7
		Leafy organic matter over weathered/ crushed sandstone, dry, loose, coarse	
SS14	0.1-0.2	grained, poorly sorted, sandstone fragments throughout, roots throughout.	3.4
		Weath and developed and the second forms of the same and the second seco	
6645	0.4.0.2	Weathered/ crushed sandstone, orange/ brown, coarse grained, poorly	2.6
SS15	0.1-0.2	sorted, dry, loose, sandstone fragments throughout, roots throughout.	2.6
		Medium brown, poorly sorted, medium to coarse grained, dry, loose,	
SS16	0.1-0.2	weathered sandstone, fragments throughout, roots throughout.	2.3
3310	0.1-0.2	Leafy organic matter over weathered/ crushed sandstone, light brown,	2.5
		medium to coarse grained, poorly sorted, loose, dry, sandstone fragments	
SS17	0.1-0.2	throughout, roots throughout.	3.6
331/	0.1-0.2	Leafy organic matter over crushed/ weathered sandstone, medium brown,	3.0
		fine to medium grained, dry, loose, poorly sorted, sandstone fragments	
SS18	0.1-0.2	throughout, roots throughout	2.3
2210	0.1-0.2	in oughout, roots throughout	2.3
		Leafy oragnic matter, vegetation over crushed/ weathered sandstone, light-	
		medium brown, dry, loose, medium grained, poorly sorted, sandstone	
SS19	0.1-0.2	fragments throughout, roots and organic matter throughout	1.7
つつエス	0.1-0.2	In agments throughout, roots and organic matter throughout	1.7

Location	Sample Depth	·	PID Measurement (ppm)
		Leafy organic matter weathered/ crushed sandstone, medium to coarse	
		grained, dry, loose, poorly sorted, light brown, sandstone fragments	
SS20	0.1-0.2	througout, roots and organic matter throughout.	3.0
		Leafy organic matter over light brown, loose, dry, medium to coarse grained,	
		poorly sorted, weathered/ crushed sandstone, fragments throughout, roots	
SS21	0.1-0.2	throughout	2.6
		Leafy organic matter over light brown, dry, loose, fine to coarse grained,	
		poorly sorted, weathered/ crushed sandstone, fragments throughout, roots	
SS22	0.1-0.2	throughout	2.4
		Leafy organic matter over medium brown, dry, loose, medium to coarse	
		grained, poorly sorted, crushed/ weathered sandstone, fragments	
SS23	0.1-0.2	throughout, roots throughout	1.9
		Leafy organic matter over broken clay targets, crushed/ weathered	
		sandstone, fine to medium grained, light brown, poorly sorted, loose, dry,	
SS24	0.1-0.2	sandstone fragments throughout, roots throughout.	3.0
		Leafy organic matter over crushed/ weathered sandstone, light brown, loose,	
		dry, poorly sorted, medium grained, sandstone fragments throughout, roots	
SS25	0.1-0.2	throughout.	2.2
		Grass / vegetation over top soil, moist, loose, coarse grained, medium brown,	
SS26	0.1-0.2	moderately sorted, roots throughout	0.4
		Grass/ bamboo, water vegetation over top soil, moist, slightly plastic,	
		medium to coarse grained, poorly sorted, medium brown, roots and organic	
SS27	0.1-0.2	matter throughout.	0.2
		Leafy organic matter/ grass/ vegetation over loam, coarse grained, moist,	
		poorly sorted, loose, sandstone fragments throughout, roots and organic	
SS28	0.1-0.2	matter throughout.	1.0
		Leafy organic matter, vegetation and river rocks (cobbles) over gravelly silty	
		clay, slightly plastic, moist, coarse grained, moderately sorted, roots and	
SS29	0.1-0.2	organic matter throughout.	0.4
		Leaves and organic matter over light yellow brown, dry, gravelly, slightly	
SS30	0.1-0.2	sandy, clayey silt, gravel is subangular to subrounded.	0.3
	0.2 0.2	Leaves and organic matter over light yellow brown, dry, gravelly, slightly	0.0
SS31	0.1-0.2	sandy, clayey silt, gravel is subangular to subrounded.	0.2
5551	0.2 0.2	Dry leaves and organic matter over light brown grey, dry silty sand with some	0.2
SS32	0.1-0.2	gravel, sand is medium grained.	0.3
0002	0.2 0.2	Dry leaves and organic matter over yellow brown, dry silty sand with some	0.0
SS33	0.1-0.2	gravel, sand is medium grained.	0.5
3333	0.1 0.2	Dry leaves and organic matter over brown grey, dry sandy silt with some	0.5
SS34	0.1-0.2	gravel, sand is medium grained.	0.1
3334	0.1 0.2	graver, sand is mediam gramed.	0.1
SS35	0.1-0.2	Leaves and organic matter over reddish brown, dry to moist silty gravel.	0.8
3333	0.1-0.2	Dry leaves and organic matter over light brown grey, dry silty sand with some	0.8
SS36	0.1-0.2	gravel, sand is medium to fine grained.	0.7
3330	0.1-0.2	Dry leaves and organic matter over yellow brown, dry silty sand with some	0.7
SS37	0.1-0.2	gravel, sand is medium grained.	0.2
3337	0.1-0.2	Dry leaves and organic matter over grey brown, dry, slightly gravelly clayey	0.2
SS38	0.1-0.2		0.4
3336	0.1-0.2	silt with some rootlets and organic inclusions.	0.4
ccao	0.1.0.3	Wet leaves and organic matter over slightly moisr grey brown dlayey silt with	0.5
SS39	0.1-0.2	trace fine gravels and sand.	0.5
		Leafy organic matter, vegetation over loamy soil, fine to medium grained,	
		moist, loose, moderately sorted, medium brown, roots and organic matter	
SS40	0.1-0.2	throughout.	0.9
		Leafy organic matter over loam, moist, medium brown, loose, coarse grained,	
		poorly sorted, roots and organic matter throughout, sandstone fragments	
SS41	0.1-0.2	throughout.	0.9
		Leafy organic matter, vegetation over soil, moist, coarse grained, loose,	
		medium brown, moderately sorted, roots and organic matter throughout,	
SS42	0.1-0.2	sandstone fragments throughout.	0.8
		Leafy organic matter over loam, moist, coarse grained, poorly sorted,	
SS43	0.1-0.2	medium brown, loose, roots and organic matter throughout.	1.8
	· · · · · · · · · · · · · · · · · · ·		

Location	Sample Depth	Description	PID Measurement (ppm)
		Vegetation/ water reeds over soil, fine to medium grained, clay-like, moist,	
SS44	0.1-0.2	slightly plastic, medium brown, roots and organic matter throughout.	1.1
		Vegetation over soil, fine to medium grained, clay-like, moist, slightly plastic,	
SS45	0.1-0.2	medium brown, roots and organic matter throughout.	0.5
SS46	0.1-0.2	Thick grass over brown, slightly moist loam, some rootlets throughout.	
		Thick grass over greyish brown, slightly moist loam with trace gravel, some	
SS47	0.1-0.2	rootlets throughout.	
		Grass/ vegetation over loamy soil, moist, coarse grained, poorly sorted, loose,	
SS48	0.1-0.2	medium brown, roots and organic matter throughout.	0.5
		Grass over soil, coarse grained, poorly sorted, loose, moist, medium brown,	
SS49	0.1-0.2	roots and organic matter throughout.	0.3
		Grass and organic matter over grey to light brown, dry to moist, slightly	
SS50	0.1-0.2	clayey, sandy silt with some rootlets.	0.1
		Grass and organic matter over grey to light brown, dry to moist, slightly	
SS51	0.1-0.2	clayey, sandy silt with some rootlets.	0.3
		Vegetation/ water reeds over soil, fine to medium grained, silty sandy clay,	
SS52	0.1-0.2	moist, slightly plastic, roots and organic matter throughout.	1.1
		Thick grass over brown to dark brown, slightly moist loam, some rootlets	
SS53	0.1-0.2	throughout.	0.2
		Leafy organic matter over loam, wet, sand is coarse grained, moderately	
SS54	0.1-0.2	sorted, dark brown, roots throughout.	0.2
		Leafy organic matter over loam, medium brown, dry, coarse grained, poorly	
SS55	0.1-0.2	sorted, roots and organic matter throughout.	1.1
		Leafy organic matter over soil, moist. Loose, coarse grained, medium brown,	
SS56	0.1-0.2	roots and organic matter throughout	1.1

Comments:

BORE LOG ID BH01

Client: SC NSW Project No: 0555344

Drilling Method: Hand Augering: Hole Diam./Width (mm): 100

Elevation (Ground): Elevation (Case):

Project Name: Bermagui Baseline Investigation

Surface Completion: Backfill Site Address: Murrah River Road Final Water Level (m bgl): -

Easting (MGA): 233193.32056 Northing (MGA): 5955355.03692

Drilling Date: 28/02/2020 - 28/02/2020

Log By: BK

Comments:			Log By: BK Checked By: MM					
Material Description	Symbol	Well Diagram	Depth (m)	Sample Type	Analysed	PID	Samples	Additional Observations
ORGANIC MATERIAL: Leafy organic matter and fragments of clay targets	77 77 77 77	90:3090:3 8630663 88876888						
, ,	V 71 71 7	00000000000000000000000000000000000000						
GRAVELLY SAND: Crushed Sandstone: Medium brown, damp, poorly sorted, medium-coarse grained, sandstone fragments throughout	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	60000000000000000000000000000000000000	0.05					
			0.1	DS	YES		BH01_0.2	Duplicate Sample Taken
		00000000000000000000000000000000000000	0.15			0.3		
			0.2					
			0.25					
			0.3					
		 	0.35					
			0.4	DS	YES		BH01_0.5	
			0.45			2.6		
Termination Depth at:0.5 m	0.0000	7-50 %0-50 7-50 %0-50 5-50 5-50 5-50 5-50 5-50 5-50	0.5					
			0.55					
Disclaimer This log is intended for anyiranment								Dogo 1 of

BORE LOG ID BH02

Client: SC NSW **Project No:** 0555344

Drilling Method: Hand Augering: Hole Diam./Width (mm): 100

Elevation (Ground): Elevation (Case):

Project Name: Bermagui Baseline Investigation Site Address: Murrah River Road

Surface Completion: Backfill Final Water Level (m bgl): -

Easting (MGA): 233241.943846 Northing (MGA): 5955200.42081

Drilling Date: 28/02/2020 - 28/02/2020

Log By: BK

Comments: Checked By: MM

			Chooled By: IIIII					
Material Description	Symbol	Well Diagram	Depth (m)	Sample Type	Analysed	PID	Samples	Additional Observations
ORGANIC MATERIAL: Leafy organic matter	1 77 77 7		_					
and fragments of clay targets	77 77 77 77 77 77 77		0.02					
	77 77 77	0.000000	0.04					
GRAVELLY SAND: Crushed Sandstone:	10. 10°0	00000000000000000000000000000000000000	0.06					Becoming lighter
Medium brown, damp, poorly sorted, medium-coarse grained, sandstone fragments	0.000	60000000000000000000000000000000000000						with depth V
throughout			0.08					
	10 odb	6000000 60000000 00000000	0.1	DS	YES		BH02_0.2	-
	0.000		0.12					
		\$3.000 \$3.000 \$3.000	0.14					
			0.16			1.2		
	5:000	0.000 % 0.0000 0.00000						
	00000	10000000000000000000000000000000000000	0.18					
	0.0000	1000 30000 1000 30000 1000 30000	0.2	DS	YES		BH02_0.3	-
	0.00		0.22					
	00000	60000000000000000000000000000000000000	0.24					
	0.000	00000000000000000000000000000000000000	0.26			1.3		
	0.60	00000000000000000000000000000000000000						
			0.28					
Termination Depth at:0.3 m	- C vv.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.3					
			0.32					
			0.34					
			0.36					
			0.38					
			0.4					
			0.42					
			0.44					
			0.46					
			0.48					
					<u> </u>			1

BORE LOG ID BH03

Client: SC NSW
Project No: 0555344

Project Name: Bermagui Baseline Investigation

Site Address: Murrah River Road

Drilling Date: 28/02/2020 - 28/02/2020

Drilling Method: Hand Augering: **Hole Diam./Width (mm):** 100

Surface Completion: Backfill Final Water Level (m bgl): -

Elevation (Ground): Elevation (Case):

Easting (MGA): 233249.225948 **Northing (MGA):** 5955190.4645

Comments: Log By: BK

Checked By: MM

		Checked By: MM							
Material Description	Symbol	Well Diagram	Depth (m)	Sample Type	Analysed	PID	Samples	Additional Observations	
ORGANIC MATERIAL: Leafy organic matter	V 77V 77V 7								
and fragments of clay targets	777 777 77 777 717 717								
	77 77 77 5 77 77 77	00000000000000000000000000000000000000							
GRAVELLY SAND: Crushed Sandstone:			0.05						
Medium brown, damp, poorly sorted, find - medium grained, sandstone fragments		\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
throughout	0000	00000000000000000000000000000000000000	0.4						
	10000	#6000 600000000000000000000000000000000	0.1	DS	YES		BH03_0.2		
		00000000000000000000000000000000000000	0.45						
	0.000	15 60 60 50 60 60 60 60 60 60 60 60 60 60 60 60 60	0.15			1.3			
		\$2.00 \$2.00	0.0						
	00000	5000000 000000000000000000000000000000	0.2						
	0000								
		0.000 30.000 0.000 30.000 0.000 30.000	0.05						
	- (\0	2862568 000000000000000000000000000000000000	0.25						
			0.2						
	9.000		0.3						
	0.000	00000000000000000000000000000000000000							
	10000		0.35						
	0.000	\$60,00 \$60,00 \$0000	0.33						
	0000	66666666666666666666666666666666666666							
	b., 0 0	#60000 60000000000000000000000000000000	0.4						
		66000860 66000860	0.4	DS	YES		BH03_0.5		
	0.000								
	0.00		0.45			1.6			
			0.43			1.0			
	0.000	\$23.05 \$2							
	0.000	586588 0208020	-0.5						
Termination Depth at:0.5 m			- 0.0						
			0.55						
		<u> </u>							

Project Number: 0555344	Project Name:	Bernagui Basi	1 0
Date: 26/5/20	Client: ()	tha Clays No	eline
Sampler: BK		magui south	ا م
Project Manager: \B	Weather: 2	magui Sportir	13 Clays
Site Manager (GESS):	**eamer. A.C.	AIR S	
One Manager (GEGG).			
Persons On Site		PM Notified/De-brief:	
Name Arrived on Site	Departed Site	ERM/Client/Contracto	r
Britan Knyd 08:00	16:30	ERM	
New Brady 08:00	16:30	Chert	/
J			
Contractors Activities On-site			
NA			
	1,11		
ERM's Activities On-site		7	
Boseline investigation	on: sult	ace soul sou	ples
			•
P			
Occupational Health & Safety/ Environmen	tal Issues/Controls	s (dust, noise, odour, sedi	ment, traffic)
	·····		
Slips, trips & Palls -	avoid a	top ores, k	eep
. 4	work are	as holy.	
		<u> </u>	
Bites/shings - look	c for snok	es espidere	, vear
501	red PPE	=	/
			ŧ
Details of Records Taken: (e.g. photos, gw	field sheet, borelo	gs)	
Soil bore logs, th	otos GP	5 coordinate	
3 / /			

Daily Log/ Discuss	lons	2501 2414
06:00	Arrived on-site. Solety briefing.	
08:30	Began sapling on-site J	
12:30	Lunch break	
13:30	Continued sampling on-site Departed site	
16:30	Departed site)	
· · · · · · · · · · · · · · · · · · ·		

Samplii	ng and Dispatch De	tails (list all primary, duplicate, T	S/TB, rinsates)	
Matrix	Sample Type	Sample ID	Parent Sample	Time
e.g. Soil	e.g. Primary/Duplicate			
Soil	Primay	5501-5525		
	Da	DOI- 20:2005:26 TOI- 20:2005:26 ROI- 20:2005:26	5509	
	Due	TO1-20200526	5509 620 5523	
	Rinsate	RO1-20200526		
	TB			
***************************************	T5			

			L COMPANY CONTRACTOR OF THE CO	

Job Information					
Project Number: 🗢 🌣	56344	Project Name:	Bernogu	P	eline
Date: 27/5/20	<u> </u>	Client: SC	- New		
Sampler: BL/P	L	Location: Be	moore	<u>5C</u>	
Project Manager: (음		Weather: 숙	2004		
Site Manager (GESS):			J		
				Aldoniala, associas	
Persons On Site			PM Notified/De		
Name	Arrived on Site	Departed Site	ERM/Client/C	ontractor	
Britlany Knight		15:00	ERM		
Pote Lovelle	08:30	18:00	ERM		
New Brody	06:30	18:00	chent		
Borry	05:30	16:00	Chern	***************************************	
				i kosotini sobsi sti	
Contractors Activities	On-site				
101	/				
				***************************************	****
				······································	***************************************
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
ERM's Activities On-si	te		···		
					
Boselne	nuchast	100: Gul	100e soul	San	Ples
····	J		liment c	- Land	<u>es </u>
		- Fast	be in	doca	aples_
Occupational Health &	Safety/ Environmen	ital Issues/Controls	s (dust, noise, od	our, sedim	ent, traffic)
Slps, trip	5 e falls	- 2000	d Stoop	creo	3
U , U		avoid	deco		
		VPOD 1	LOCK OF	-0-01	
				- S	
Biks/sh	10005 - K	200 00 0	are oud	G2 5	nakes
	و	60101019	3) COUCC	iPC)E
		1			•
Details of Records Tak	cen: (e.g. photos, gw	field sheet, borelo	gs)		
and the second s		e an luis sur a desert reagail en a de trettesar (fine)		**************************************	
and have	- 10	alac Co	26	J10 -	Jac
-CII CORE	-1033 P	WOS OF	- (00/		
				····	

Daily Log/ Discussions	
08:30	Arrived on site
08:45	Began sampling an-site
12:00	Lunch break I
13:00	Continued Sampling off-site
18:00	Continued Sampling off-site Departed site
•	
*** **********************************	

Samplii	Sampling and Dispatch Details (list all primary, duplicate, TS/TB, rinsates)			
Matrix	Sample Type	Sample ID	Parent Sample	Time
e.g. Soil	e.g. Primary/Duplicate			
Soil	Densu	9500 95000M		
	Dup	DOI-20200527	5540	
	Dup	TO1. 20200527	<u>5540</u> 5553	
	Rinsole	POI - 20200527		
	TB			
	75		LANGUAGO CONTRACTOR CO	
	Physia /	1SA DOX		
	PHANTE //	4545/545/6,		
	Villary (19/14/45///		
	J	SGAR/ESURY		

	Primary	5526 - 5553 5555, 5556		
	Primary	5555, 5556		
	<u> </u>			
		A factorist and the state of th		
			A LIANA MARIANTAN	
			414444444	

Project Number: 0555344	Project Name:	Bernagui Boseli	
Date: 28/5/20	Client:		
Sampler: BL		evegu SC	
Project Manager: 18	Weather:	(000(4	
Site Manager (GESS):		3	
Persons On Site		PM Notified/De-brief:	
Name Arrived on Site	Departed Site	ERM/Client/Contractor	
Britan Know 07:30	16:00	ERM	~
New Brada 07:30	16:00	Cherl	
J			
Contractors Activities On-site			
2.10			
NA /			
			·~··········
ERM's Activities On-site			
Boseline investigato	a: surfac	e not souple	242
	<u>sedine</u>	d souples	
	bore h	de I had our	e15
	surfac	ze soil saple	,
Occupational Health & Safety/ Environme	ntal lecuse/Control	Vdust noise adaily codimos	MARKET AND SOME
Cocupational fication of Ogiety Environme	antai issues/commo:	s (dust, noise, ododi, sedimen	i, irainic)
	E		····
SIPS, MPS & Fells	<u>avoid</u>	step creas, ke	2ep
	iock or	se holy, and	deep
	voter.	<u> </u>	
Rules (b	·····		7
Dits/stings W	ea corre	d PPE, look	<u>ک</u>
50	okes a	spiders.	······································
Details of Records Taken: (e.g. photos, g	w field cheet borelo	(ne)	ang pata kalenda a
		99	
PLI	1	1	***************************************
1 notos, soil bore	100/5, in	oter parameter	54
Lots locations			

Daily Log/ Discussions	
67:30	Arrived on-site
07:40	Arrived on-site Pregar sampling off-site
11:30	Lurch break
12:00	Continued sapling on site
	(including 2x HAY
16:00	Deported Site
	The state of the s

Samplii	ng and Dispatch De	tails (list all primary, duplicate, T	S/TB, rinsates)	
Matrix	Sample Type	Sample ID	Parent Sample	Time
e.g. Soil	e.g. Primary/Duplicate			
501	Princy	5554		
	Primary	BHO1-BHO3		
	Primary	SEDOZ-BERRIGHT S	EDO6	
Weter	Primary	SWOI-BILLOUTE SI	706	
	Dup	DOI_20200528	BH01-0.5	
	Rinsole	POI-20200528		
••••				
				_
	1_1,,,,,,,,,		•	

Date 2 6/5/20 [Meeting 7	eseline Telephone 🔲 Calculat	ion Other Page \ of	ER
3etween		of ERM		
and	V-2	of	Telephone	
Other attendees at	meeting GwC	ace water a	not sediment sample	5.

Sample	1549	20 SPC ppm) (us/cm)	PH Redox	
		ppm) (us/cm)		
5001	12.4 C	178 421.6	8.15 -163.9	
5W02	11.2 6	65 654.3	7.86 -40.0	
6003	10.6 6	, 16 9,864	7.16 -42.7	
5W04	12.1 5	52 40062	8.03 1.5	,
6W06	12.2 5	32,881	7.66 -34.91	
5NO6	11.3 6	. 33 37558	7.56 -5.9	
Sample	Descrip	ton		
5EDOI	Coorse a	grouned sono	d, prodestelly ested, or	ocil
EEDOZ	Coose e	graned sand	, notecity sorbal, ang	ub
SED03				lov,
	sotwoto	d, loose, oran	ge/white.	
SEDO4	Coose c	rand sad	, moderally soled ong	مل
SERS	The grav	ned sit, well	soled, solveted, medi	
	lorgun,	lose, nesllec	y in reacts	
SEDOG	The ava	heal silt well	sortal, sohnatal, medi	Lin
	bow, 6	Pose, nestled	In reeds	
And the state of t				
				
		_		

Project data and calculations must be checked for currency/accuracy/ applicability before release for use on project. PM/PD signature indicates this has occured.

PM/PD

APPENDIX E PHOTOLOG

www.erm.com Version: 1.1 Project No.: 0555344 Client: Sporting Clays NSW 10 July 2020

Surface soil sampling equipment.

Photograph 2

SS09 and D01_20200526 – primary and duplicate sample.

Photograph 3

SS12

Photograph 5

SS16

Photograph 6

SS21

Photograph 8

SS26

Photograph 9

Photograph 11

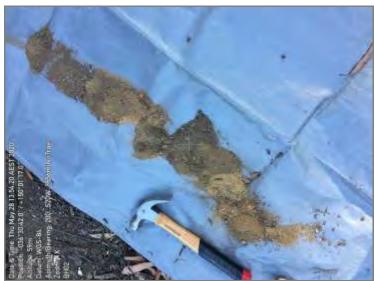
SS41

Photograph 12

SS50

Photograph 14

SS53 and T01_20200527 – primary and triplicate sample.



Photograph 15

BH01 sample location.

Photograph 17

BH02 sample location.

Photograph 18

BH03 sample location.

South western dam void of water and overgrown with vegetation.

Photograph 20

Murrah River facing west – SW02 location.

Photograph 21

Murrah River facing north, south of convergence point with Arnolds Gully – SW04 location.

Photographs

APPENDIX F LABORATORY REPORTS

www.erm.com Version: 1.1 Project No.: 0555344 Client: Sporting Clays NSW 10 July 2020

Company	ERM		Purcha	ase Order					Project Manage	ar lan Ba	atterley		Project Name	Bermagui	Baseline Conta	mination
Address	309 Kent St, Sydney 2000			ins mgt ote №					Project Na	55534	14		Electronic Results Format	ESDAT		
tact Name	Brittany Knight		[_pa]										Email for Results		ight@erm.com, le@erm.com	
ot Phone №	433788322		fy Total or Filte	(A									Turn Around	□ 1 DAY*	☐ 2 DAY*	☐ 3 DAY*
al Direction			Analysis ested, please speci	Metals (lead, arsenic, antimony)	sloner	meters	Lead	Θ.					Requirements	☑ 5 DAY (Std.)	Other (* Surcharges apply
			els are reque	ead, arsı	PAH, phenols	Soil Parameters	ASLP Lead	HOLD					Cont	ainers		of Shipment
quished by	Brittany Knight		(Note: Where met	Metals (U)							sstic Plastic Plastic Plastic Plastic	vial oer Glass r niner	Courief (#) bd
e / Date)													1L Plastic 250mL Plastic 125mL Plastic 200mL Amber Glass	40mLvial 125mL Amber Glass Jar 1 container	□ _{Postal}	
	Client Sample ID	Date	Matrix												Sample Comment	s / DG Hazard Warning
501,	0.2	2615	Soil	V												
5 02	_0.2	1	4	1						1						
503	0.2			/					1	Vote:	ALL	Carolo	stab	2 and	15001	
504	-0.2			1							-	For un	tals	hit	200	0
505	-0.2			1								Sarple For me HOLT) row		pea	2
90C	_0.2			1									10 G	Qui	sier c	01
	_0.2			1								Samp	11 1	10070	100	noly
	5-0.2			1								saup We with	-111 D	en	Tonc	h
	1_0.7			/								with	TUT	rev	nsm	(chan!
	0.2			/												
S11.				/												
			1	1									-			
5512	_O. Z	-sh	. 0	-												

CI	TAIN OF CUS		RECORE) [☑ Eurofins Sydney	mgt Lab	31.1657390	g F. (KAbusina 1840) provincije ume		10W 20W	[Eurofins Brisbane	mgt mgt	Instrument Place Meaning (25) A 1907 April 1 Company Ingraesian menyar			□ Ei	urofins	s mgt	2 Kingstor P +613 E Faven	ri Town Close, Cakl B564 5900 F - SampleVic@eurofin	eigh VIC 3166 -61 3 8564 5090	2	7
Company	ERM			Purch	nase Order						Proje	ect Manager	lan Batte	rley		F	roject Na				ii Baselin			- (
Address	309 Kent St, S	ydney 2000			fins mgt uote Ne						Pi	roject №	555344			Ele	ctronic R Forma		-	SDAT				
Contact Name	Brittany Knigh	t		(_pa.												Em	ail for Re	esults			(night@e elle@erm			
Contact Phone №	433788322			otal" or "Filtered")																				
Special Direction				Analysis osted, pleese specify Total	Metals (lead, arsenic, antimony)	nenols	meters	Lead	9								um Arou equireme		☐ 1 E	DAY*	□ _{2 [}		3 DAY*	
Relinquished by	Brittany Knight			laks are reque	lead, ars	PAH, phenols	Soil Parameters	ASLP Lead	HOLD									Conta	ainers				of Shipment	
(Signature)	Brittany Knigh	,		(Note: Where me	Metals (40			☑ _{Co}	urier (#)
(Time / Date)				ON)												1L Plastic	250mL Plastic 125mL Plastic	200mL Amber Glass	40mLvial 125mL Amber Glass	Jar	ži Ži	nd Delivered		
No.	Client Sample ID															=	250n 125n	200шГ/	40 125mL /	1	Pos	,tal		
			Date	Matrix														Ш			Sample	Comments	/ DG Hazard W	Varning
	3-0.2		2615	Soil	/																			
2 5514			1		/																			
3 5515	0.2																							
4 5516	-0.2				/																			
5 5517	1-0.2				1															Ħ				
6 5518	5-0.2				/																			
7 5519	2-0.2				/											H		H						
	0-0.2				/															#				
	1-0.2																		4					
																			1					
	2.0.2		-		/																			
	3_0.2				1																			
352	4-0.7		37	4	1																			
Laboratory Use Only		My	anne	Kord						Date	46	pos	Time	Hill	PH Signature	1	la	d	5		Temp	erature	13.8	260
ied by: S. Kojima Approved by: T.	Received By Lakeland Approved on: 11 August 201	5			SYD B	VE MEL	PER A	DL NEW		Date on of samples to the	he laboratory will	he deemed on	Time	ns I mot Standard Terms	Signature			/			Rep	ort No	13.80 7230	44

Ch	ABN 50 005 095 521			Sydney L	-80	A tomber	+*11740+1-11-1	100,00	Brisba	ine Lab	P. HT190 ASS. C. Charles and Tiller and company in	☐ Eurofii Melbo		gston Town Close Calcleigh, VIC 3166 313 8564 5000 F +61 3 8564 5090 tvroSampleVic@eurofins.com au	3
Company	ERM			ase Order					Project Manage	lan E	Batterley	Project Name	Berma	gui Baseline Conta	mination
Address	309 Kent St, Sydney 2000			fins mgt uote №					Project №	5553	44	Electronic Results Format	ESDAT		
Contact Name	Brittany Knight		ered")									Email for Results		/.knight@erm.com velle@erm.com	,
ntact Phone №	433788322		otal" or "Filk										☐ 1 DAY*	☐ 2 DAY*	□ 3 DAY*
ecial Direction			Analysis ested, please specify "	Metals (lead, arsenic, antimony)	slor	eters	ad					Turn Around Requirements	☑ 5 DAY (Si		*Surcharges ap
			An are requeste	ad, arsen	PAH, phenols	Soil Parameters	ASLP Lead	HOLD				Co	ntainers	Method	of Shipment
linquished by	Brittany Knight		ote: Where metals	Metals (lea	ď	Soi	*					56	8	Courier (#	
ime / Date)			-									1L Plassic 250mL Plassic 125mL Plassic 200mL Amber Glass	40mLvial 125mL Amber Glass Jar	Hand Delivered	rd
	Client Sample ID	Date	Matrix									200	125		s / DG Hazard Warn
552	5-0.2	2615	Soil	/											
DO1_	20200526	1	1	/											
TO1-	20200526		1	/											
RO1 -	20100526	4	Wer	/	•										
TB		2815	1	1											
TS		28/5	7	1											
JOI -	20200527	2715	Soil	1											
201-	20200527	1	Woles	1											
TO1-	20200527	4	Sail	/											
DOI_	20200528	28/5	Soil	1											
	20200528														
Pratory Use Only	Received By	vision (Kora	BN BN	NE MEL	PER A	DL NEW	DAR	46/20	20 Time	1/2 CPH	Signature	2	Temperature	دور
use only	Received By			SYD BN	VE MEL	PER A	DL NEW	DAR		Time		Signature Signature		Report №	13.86

	CHAIN OF CUSTODY F	RECORD	G	Eurofins Sydney	mgt Lab	T. S. SOOR	r diaina ka hiir	Late Coat (Inc)	Euro Bris	ofins m sbane La	Unit 1.21 Smallwood Place Muramie QLD 4172 P +817 3902 4900 E EnviroSampleQLD@eurofns.com.au		Eurofin Melbou	s mgt rne Lab	2 Kingston To P +613 8564 E EnviroSarr	wn Cfose, Oak)eigh, VIC 3166 I 5000 - F. +61.3 8564 5690 pkeVic@exrofins.com.au	4/
Company	ERM		Purch	ase Order					Project Mana	iger	lan Batterley	Proj	ect Name	Ве	ermagui f	Baseline Contamir	nation
Address	309 Kent St, Sydney 2000			fins∣mgt oteN≥					Project No		555344		onic Results Format	ES	SDAT		
Contact Nam	Brittany Knight		ed" }									Email	for Results	bri pe	ittany.kni ter.lavell	ight@erm.com, `` e@erm.com	
Contact Phone	Nº 433788322		Total" or "Filter										_	□ 10	DAY*	□ _{2 DAY*}	□ 3 DAY*
Special Direct	ion		Analysis ested, plesse specify*	Metals (lead, arsenic, antimony)	sloui	neters	ad						n Around uirements			Other (* Surcharges apply
			A metals are reques	ead, arse	PAH, phenals	Soil Parameters	ASLP Lead	HOLD					Con	ntainers		Method of a	Shipment
Relinquished (Signature)	,		(Note: Where meta	Metals (Io		S						وا	stic	Giess		Courier (#)
(Time / Date												1L Plastic 250mL Plastic	125mL Plastic 200mL Amber Glass	40m£vial 125mL Amber Glass	Jar 1 container	□ _{Postal}	
Nº	Client Sample ID	Date	Matrix													Sample Comments / [OG Hazard Warning
1 552	26-0.2	27/5	Soil	/													
2 550	7-0.Z			/													
3 557	28-0.2			/													
4 55	29_0.2			/													
5 55	30-0-1			/													
6 55	31 -0.1			/													
7 55	32 _ 0.1			/													
8 55	33 - 0.1			/													
9 55	34_0.1			/													_
10 55	35_0.1			/													
	36-0.1			/													
12 55	37-0.1	4	4	1		3											
				-				-		/							

SYD | BNE | MEL | PER | ADL | NEW | DAR

Received By

Laboratory Use Only

Signature

Report №

CH	AIN OF CUST(ABN 50 005 085 521	ODY RE	CORD	ē	Eurofins Sydney L	mgt .ab	F; 45:1:003	leNSW@eurofins o		91A (24%)	☐ Eurofi Brisba	ns mgt ne Lab	For Ampheod Paris Magnet (20) (17) et 2 (20) (20) et 2 (20) (20) (20) (20) (20) (20) (20)				Euro Melb	fins ourne	mgt Lab	2 King P +6 E Er	gston Town if 3 8564 Si iviroSample	n Close, Cakleigh, VIC 3166 5680 F. +61.3 8564 5090 feVic@eurofins.com au	51
Company	ERM			Purcha	ase Order						Project Manager	lan Bat	tterley			Projec	ot Name	e	Ве	erma	gui B	aseline Contamin	nation
Address	309 Kent St, Sydne	ey 2000			ns∣mgt oteNe						Project №	555344	ı		E		ic Resu rmat	ults	ES	SDAT			
Contact Name	Brittany Knight			(pe											E	Email fo	or Resu	ilts				ght@erm.com, e@erm.com	
Contact Phone №	433788322			otal" or "Fifter																			☐ 3 DAY*
Special Direction				nalysis ted, please specify Total	Metals (lead, arsenic, antimony)	nots	eters	ga									Around	,		DAY (St	id.)	Other (* Surcharges apply
				Ar s are requests	ad, arser	PAH, phenols	Soil Parameters	ASLP Lead	HOLD								(Contair	ners			Method of S	Shipment
Relinquished by (Signature) (Time / Date)	Brittany Knight			(Nate: Where metal	Metals (le		ŭ								1L Plastic	250mL Plastic	125mL Plastic	200mL Amber Glass	40mLvnal 125mL Amber Glass	Jer	rtainer	Courier (# Hand Delivered Postal)
NΩ	Client Sample ID		Date	Matrix														500	121	i		Sample Comments / D	G Hazard Warning
553	8-0.1		2715	Sail	/													Ī					
5530	1.0.1		V		/															T			
5540	1.0.1				1													Ť			П		
5541	-0.2				/																		
5542	-0.2				/																		
5543	3-0.2				/																		
5544	1-0.2			1	/																		
	5-0.2				/																		
	0.1				1																		
9547	1-0-1				/																		
	5-0.7				/																		
	7-0.2		N	A	/																		
Laboratory Use Only	Received By	diger	uno,	Form	Br	NE MEL	PER A	JDL NEW	DAR	Date	46/20	20 Time	A:101	Signature	4			90				Temperature	3.86 6
	Received By Lakeland Approved on: 15 August 2015	1						'DT NEW	DAR	Date		Time	urofins mgt Standard Terms	Signature								Report Na	2230

CH	ABN 50 005 005 521	RECORD		Eurofins Sydney L	mgt .ab	P. +0.7 (doi:1	yf 10 Ned Heart Strik Sf77 Mjesstot i	are Con Win 23/240.	Eurofins Brisbane	mgt File File File File File File File File	Play Mount (2014)) Shealth Caron	Eurofin:	s mgt 2Kingsion P +61385	Fown Close, Oakleigh, VIC 3166 i64 5000 F +61 3 8564 5090 impleVio@eurofins.com au	6
Company	ERM		Purcha	ase Order					Project Manager	lan Batterley		Project Name	Bermagui	Baseline Conta	
Address	309 Kent St, Sydney 2000			ins mgt ote №					Project №	555344		Electronic Results Format	ESDAT		
Contact Name	Brittany Knight		ered")									Email for Results		night@erm.com, lle@erm.com	,
Contact Phone №	433788322		Total or Filt	•									☐ 1 DAY*	□ _{2 DAY*}	☐ 3 DAY*
Special Direction			Analysis ested, please specify	Metals (lead, arsenic, antimony)	slouels	meters	ead	Q				Turn Around Requirements	☑ 5 DAY (Std.)	Other (* Surcharges apply
D.F. (1.1)	B		als are reque	ead, arsı	PAH, phenols	Soil Parameters	ASLP Lead	HOLD				Con	tainers		d of Shipment
Relinquished by (Signature)	Brittany Knight		(Note: Where me	Metals (•,						stic Hastic Mastic	rial er Glass iner	Courier (#) ed
(Time / Date)												1L Plastic 250mL Plastic 125mL Plastic 200mL Amber Glass	40mLviel 125mL Amber Glass Jar	Postal	
ĮΣ	Client Sample ID	Date	Matrix											Sample Comment	ts / DG Hazard Warning
555	1.0.0	2715	1105												
555	01-0.2		\												
555	52-0.2	4	4												
SED	Ol walk	27/5	Seol.												
SWC) (20/5	Water												
SED	02	Ï	Soil												
SWO			Water									Į.			
SED			Soil												
SWO	72		Loter												
SEL			Soil												
SWC			e l												
PT		4	moter												
1 1		gane	200	Ø7D ₽B	NE MEL I	PER A	DL I NEW I	DAR Date	1/6/200	7 Time	6:1000				
aboratory Use Only	Received By	Jane.	FCVO				DL NEW		- I	Time	Signature Signature	1109	0	Temperature Report №	13.86

SEP05	28/6	5011	
SW05		uple	
SEDO6		Solil	
SED		Water	
5W06	₹V	cI.I	
BH01-0.2)	30 11	And the state of t
BHO1_0.5			The same of the sa
BH02-0.2			
BH02_0.3	47	-	
BH03-0.2			
BH03-0.5	4		4
9554-0.2	*	1	4

29/5 4:20 PM drop dril 12.5. 14.5 14

Myonne tood

1/6/2000

4:10PM

flore)

13.86°C

mZMID.

#AU04_Enviro_Sample_NSW

From: Brittany Knight <Brittany.Knight@erm.com>

Sent:Tuesday, 2 June 2020 4:02 PMTo:#AU04_Enviro_Sample_NSWCc:Peter Lavelle; Ian Batterley

Subject: RE: Eurofins Sample Receipt Advice - Report 723044 : Site BERMAGUI BASELINE

CONTAMINATION (555344)

Follow Up Flag: Follow up Flag Status: Flagged

Hi Suzanne.

Sorry for the confusion – we had a couple of mix-ups in the field.

Can you please alter the sample names as follows:

- SS53_0.1 to remain as is

- SS53_0.2 change to SS55_0.2
- SS54_0.1 to remain as is
- SS54_0.2 change to SS56_0.2

Please analyse these for metals and hold the remainder of the sample as we will be in touch with further analysis.

Kind regards

Brittany Knight

Environmental Scientist

From: EnviroSampleNSW@eurofins.com < EnviroSampleNSW@eurofins.com >

Sent: Tuesday, June 2, 2020 3:19 PM

To: Ian Batterley < Ian. Batterley@erm.com>

Cc: Brittany Knight <Brittany.Knight@erm.com>; Peter Lavelle <Peter.Lavelle@erm.com>

Subject: Eurofins Sample Receipt Advice - Report 723044 : Site BERMAGUI BASELINE CONTAMINATION (555344)

Dear Valued Client,

Samples; SS53_0.1 and SS53_0.2 received extra - analysis on hold.

Please find attached an amended Sample Receipt Advice (SRA), an amended Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Suzanne Ford

Sample Receipt

Eurofins | Environment Testing

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone: +61 02 9900 8421

Email: <u>EnviroSampleNSW@eurofins.com</u> Website:environment.eurofins.com.au

EnviroNote 1079 - PFAS Fingerprinting

EnviroNote 1080 - Total Organofluorine Analysis & PFAS Investigations

EnviroNote 1098 - Melbourne PFAS Accreditation EnviroNote 1103 - NATA Accreditation for Dioxins

This electronic mail message may contain information which is (a) LEGALLY PRIVILEGED, PROPRIETARY IN NATURE, OR OTHERWISE COVERED BY LAW FROM DISCLOSURE, and (b) intended only for the use of the Addressee (s) names herein. If you are not the Addressee (s), or the person responsible for delivering this to the Addressee (s), you are hereby notified that reading, copying, or distributing this message is prohibited. If you have received this electronic mail message in error, please contact us immediately and take the steps necessary to delete the message completely from your computer system. Environmental Resources Management Australia Pty Ltd (ERM) has systems in place to encourage a virus free software environment, however we cannot be liable for any loss or damage, corruption or distortion of electronically transmitted information, or for any changes made to this information during transferral or after receipt by the client.

Please visit ERM's web site: http://www.erm.com. To find out how ERM manages personal data, please review our Privacy Policy

Click here to report this email as spam.

Scanned By Websense For Euro fins

#AU04_Enviro_Sample_NSW

To: Brittany Knight

Subject: RE: Eurofins Sample Receipt Advice - Report 723044 : Site BERMAGUI BASELINE

CONTAMINATION (555344)

From: Brittany Knight [mailto:Brittany.Knight@erm.com]

Sent: Wednesday, 3 June 2020 10:55 AM

To: #AU04_Enviro_Sample_NSW

Cc: Peter Lavelle; Ian Batterley; Anne Ashworth

Subject: RE: Eurofins Sample Receipt Advice - Report 723044 : Site BERMAGUI BASELINE CONTAMINATION

(555344)

Hello,

As discussed, can you please hold the analysis on the following triplicate samples and send them on to ALS:

- T01 20200526
- TO1_20200527

Please contact me if you have any questions.

Kind regards

Brittany Knight

Environmental Scientist

ERM

Level 15 | 309 Kent St | Sydney NSW 2000 **T** +61 (0)2 8586 8744 | **M** +61 (0) 433 788 322 **E** brittany.knight@erm.com | **W** www.erm.com

ERM The business of sustainability

Please consider the environment before printing this message

Read our 2019 Sustainability Report: From The What to The How and ERM Foundation Annual Review.

From: EnviroSampleNSW@eurofins.com < EnviroSampleNSW@eurofins.com >

Sent: Tuesday, June 2, 2020 9:54 PM

To: lan Batterley <lan.Batterley@erm.com>

Cc: Brittany Knight <Brittany.Knight@erm.com>; Peter Lavelle <Peter.Lavelle@erm.com>

Subject: Eurofins Sample Receipt Advice - Report 723044 : Site BERMAGUI BASELINE CONTAMINATION (555344)

Dear Valued Client,

Please find attached an amended Sample Receipt Advice (SRA), an amended Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section

and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Suzanne Ford **Sample Receipt**

Eurofins | Environment Testing

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone: +61 02 9900 8421

Email: <u>EnviroSampleNSW@eurofins.com</u> Website:environment.eurofins.com.au

EnviroNote 1079 - PFAS Fingerprinting

EnviroNote 1080 - Total Organofluorine Analysis & PFAS Investigations

EnviroNote 1098 - Melbourne PFAS Accreditation EnviroNote 1103 - NATA Accreditation for Dioxins

This electronic mail message may contain information which is (a) LEGALLY PRIVILEGED, PROPRIETARY IN NATURE, OR OTHERWISE COVERED BY LAW FROM DISCLOSURE, and (b) intended only for the use of the Addressee (s) names herein. If you are not the Addressee (s), or the person responsible for delivering this to the Addressee (s), you are hereby notified that reading, copying, or distributing this message is prohibited. If you have received this electronic mail message in error, please contact us immediately and take the steps necessary to delete the message completely from your computer system. Environmental Resources Management Australia Pty Ltd (ERM) has systems in place to encourage a virus free software environment, however we cannot be liable for any loss or damage, corruption or distortion of electronically transmitted information, or for any changes made to this information during transferral or after receipt by the client.

Please visit ERM's web site: http://www.erm.com. To find out how ERM manages personal data, please review our Privacy Policy

Click <u>here</u> to report this email as spam.

ScannedByWebsenseForEurofins

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 NATA # 1261 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

ERM Sydney Company name:

Contact name: Ian Batterley

BERMAGUI BASELINE CONTAMINATION Project name:

Project ID: 555344 COC number: Not provided

Turn around time: 5 Day

May 29, 2020 4:20 PM Date/Time received:

Eurofins reference: 723044

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- \square Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \mathbf{V} Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Samples TO1 20200526 and TO1 20200527 sent to ALS

Contact notes

If you have any questions with respect to these samples please contact:

Alena Bounkeua on Phone : or by e.mail: AlenaBounkeua@eurofins.com

Results will be delivered electronically via e.mail to Ian Batterley - ian.batterley@erm.com.

Note: A copy of these results will also be delivered to the general ERM Sydney email address.

ERM Sydney Level 15, 309 Kent St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 1 of 19

Report Number: 723044-S-V2

Attention: Ian Batterley

Report 723044-S-V2

Project name BERMAGUI BASELINE CONTAMINATION

Project ID 555344
Received Date May 29, 2020

Client Sample ID			SS01_0.2	SS02_0.2	SS03_0.2	SS04_0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Jn02104	S20-Jn02105	S20-Jn02106	S20-Jn02107
Date Sampled			May 26, 2020	May 26, 2020	May 26, 2020	May 26, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	3.2	5.6	< 2	9.3
Lead	5	mg/kg	14	26	< 5	14
% Moisture	1	%	7.0	8.4	5.1	6.2

Client Sample ID			SS05_0.2	SS06_0.2	SS07_0.2	SS08_0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Jn02108	S20-Jn02109	S20-Jn02110	S20-Jn02111
Date Sampled			May 26, 2020	May 26, 2020	May 26, 2020	May 26, 2020
Test/Reference	LOR	Unit				
Heavy Metals		·				
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	7.0	4.5	4.0	4.0
Lead	5	mg/kg	15	25	24	17
		•				
% Moisture	1	%	8.1	7.2	6.7	8.6

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference Heavy Metals	LOR	Unit	SS09_0.2 Soil S20-Jn02112 May 26, 2020	SS10_0.2 Soil S20-Jn02113 May 26, 2020	SS11_0.2 Soil S20-Jn02114 May 26, 2020	SS12_0.2 Soil S20-Jn02115 May 26, 2020
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	< 2	< 2	4.9	16
Lead	5	mg/kg	19	60	14	70
% Moisture	1	%	8.2	9.1	7.5	11

Client Sample ID Sample Matrix			SS13_0.2 Soil	SS14_0.2 Soil	SS15_0.2 Soil	SS16_0.2 Soil
Eurofins Sample No.			S20-Jn02116	S20-Jn02117	S20-Jn02118	S20-Jn02119
Date Sampled			May 26, 2020	May 26, 2020	May 26, 2020	May 26, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	5.5	5.2	3.5	8.8
Lead	5	mg/kg	20	13	12	260
% Moisture	1	%	8.9	7.5	7.5	9.6

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SS17_0.2 Soil S20-Jn02120 May 26, 2020	SS18_0.2 Soil S20-Jn02121 May 26, 2020	SS19_0.2 Soil S20-Jn02122 May 26, 2020	SS20_0.2 Soil S20-Jn02123 May 26, 2020
Test/Reference Heavy Metals	LOR	Unit	May 20, 2020	Way 20, 2020	Way 20, 2020	Way 20, 2020
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	3.9	3.7	< 2	10
Lead	5	mg/kg	41	26	65	20
% Moisture	1	%	7.6	6.7	4.8	5.3

Client Sample ID Sample Matrix			SS21_0.2 Soil	SS22_0.2 Soil	SS23_0.2 Soil	SS24_0.2 Soil
Eurofins Sample No.			S20-Jn02124	S20-Jn02125	S20-Jn02126	S20-Jn02127
Date Sampled			May 26, 2020	May 26, 2020	May 26, 2020	May 26, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	2.9	7.4	6.0	4.1
Lead	5	mg/kg	83	21	23	20
% Moisture	1	%	5.9	4.6	7.2	6.8

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SS25_0.2 Soil S20-Jn02128 May 26, 2020	DOI_20200526 Soil S20-Jn02129 May 26, 2020	DOI_20200527 Soil S20-Jn02132 May 27, 2020	DOI_20200528 Soil S20-Jn02135 May 27, 2020
Test/Reference Heavy Metals	LOR	Unit	Way 20, 2020	Way 20, 2020	Way 27, 2020	Way 27, 2020
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	4.7	< 2	4.2	5.0
Lead	5	mg/kg	20	38	31	17
% Moisture	1	%	8.3	8.7	19	5.2

Page 2 of 19

Client Sample ID Sample Matrix			SS26_0.2 Soil	SS27_0.2 Soil	SS28_0.2 Soil	SS29_0.2 Soil
Eurofins Sample No.			S20-Jn02137	S20-Jn02138	S20-Jn02139	S20-Jn02140
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	5.1	6.5	4.7	4.9
Lead	5	mg/kg	42	37	41	75
% Moisture	1	%	47	45	22	22

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SS30_0.1 Soil S20-Jn02141 May 27, 2020	SS31_0.1 Soil S20-Jn02142 May 27, 2020	SS32_0.1 Soil S20-Jn02143 May 27, 2020	SS33_0.1 Soil S20-Jn02144 May 27, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	8.9	7.4	2.7	5.7
Lead	5	mg/kg	32	26	18	20
	·					
% Moisture	1	%	8.9	11	11	16

Client Sample ID Sample Matrix			SS34_0.1 Soil	SS35_0.1 Soil	SS36_0.1 Soil	SS37_0.1 Soil
Eurofins Sample No.			S20-Jn02145	S20-Jn02146	S20-Jn02147	S20-Jn02148
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	2.1	11	3.9	11
Lead	5	mg/kg	9.8	20	10.0	19
% Moisture	1	%	8.8	9.3	7.5	13

Client Sample ID Sample Matrix			SS38_0.1 Soil	SS39_0.1 Soil	SS40_0.1 Soil	SS41_0.2 Soil
Eurofins Sample No.			S20-Jn02149	S20-Jn02150	S20-Jn02151	S20-Jn02152
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	3.3	2.9	3.6	3.4
Lead	5	mg/kg	16	38	23	200
% Moisture	1	%	8.4	20	23	21

Page 3 of 19

Client Sample ID Sample Matrix			SS42_0.2 Soil	SS43_0.2 Soil	SS44_0.2 Soil	SS45_0.2 Soil
Eurofins Sample No.			S20-Jn02153	S20-Jn02154	S20-Jn02155	S20-Jn02156
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	2.8	5.4	3.9	5.3
Lead	5	mg/kg	24	1000	25	35
% Moisture	1	%	16	27	36	37

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SS46_0.1 Soil S20-Jn02157 May 27, 2020	SS47_0.1 Soil S20-Jn02158 May 27, 2020	SS48_0.2 Soil S20-Jn02159 May 27, 2020	SS49_0.2 Soil S20-Jn02160 May 27, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	2.9	5.2	7.5	3.8
Lead	5	mg/kg	14	26	28	21
% Moisture	1	%	28	24	23	22

Client Sample ID Sample Matrix			SED05 Soil	SED06 Soil	BH01_0.2 Soil	BH01_0.5 Soil
Eurofins Sample No.			S20-Jn02161	S20-Jn02163	S20-Jn02165	S20-Jn02166
Date Sampled			May 28, 2020	May 28, 2020	May 28, 2020	May 28, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	2.9	4.7	4.8	4.8
Lead	5	mg/kg	10	22	32	17
% Moisture	1	%	66	63	5.2	4.7

Client Sample ID			BH02_0.2	BH02_0.3	BH03_0.2	BH03_0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Jn02167	S20-Jn02168	S20-Jn02169	S20-Jn02170
Date Sampled			May 28, 2020	May 28, 2020	May 28, 2020	May 28, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	6.8	6.6	8.6	9.5
Lead	5	mg/kg	130	150	59	32
% Moisture	1	%	4.6	4.6	6.8	6.7

Page 4 of 19

Client Sample ID			SS54_0.2	TB (1)	TB (2)	TS (1)
Sample Matrix	Soil		Soil	Soil	Soil	
Eurofins Sample No.			S20-Jn02171	S20-Jn02183	S20-Jn02184	S20-Jn02185
Date Sampled			May 28, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	-	-	-
Arsenic	2	mg/kg	6.6	-	-	-
Lead	5	mg/kg	32	-	-	-
% Moisture	1	%	39	-	-	-
Total Recoverable Hydrocarbons - 2013 N	EPM Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	< 0.5	93
TRH C6-C10	20	mg/kg	-	< 20	< 20	82
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	< 20	-
Total Recoverable Hydrocarbons - 1999 N	EPM Fractions					
TRH C6-C9	20	mg/kg	-	< 20	< 20	82
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	< 0.1	110
Toluene	0.1	mg/kg	-	< 0.1	< 0.1	85
Ethylbenzene	0.1	mg/kg	-	< 0.1	< 0.1	83
m&p-Xylenes	0.2	mg/kg	-	< 0.2	< 0.2	86
o-Xylene	0.1	mg/kg	-	< 0.1	< 0.1	85
Xylenes - Total*	0.3	mg/kg	-	< 0.3	< 0.3	85
4-Bromofluorobenzene (surr.)	1	%	=	64	86	76

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled Test/Reference		LOR	Unit	TS (2) Soil S20-Jn02186 May 27, 2020
Total Recoverable Hydrocarbons - 2013 NEF	PM Fracti		Offic	
Naphthalene ^{No2}	III T T GOL	0.5	mg/kg	96
TRH C6-C10		20	mg/kg	100
TRH C6-C10 less BTEX (F1)N04		20	mg/kg	-
Total Recoverable Hydrocarbons - 1999 NEF	M Fracti	ons		
TRH C6-C9		20	mg/kg	100
BTEX				
Benzene		0.1	mg/kg	100
Toluene		0.1	mg/kg	100
Ethylbenzene		0.1	mg/kg	100
m&p-Xylenes		0.2	mg/kg	100
o-Xylene		0.1	mg/kg	99
Xylenes - Total*		0.3	mg/kg	100
4-Bromofluorobenzene (surr.)		1	%	125

Page 5 of 19

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Heavy Metals	Testing Site Sydney	Extracted Jun 03, 2020	Holding Time 180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS % Moisture	Sydney	Jun 01, 2020	14 Days
- Method: LTM-GEN-7080 Moisture Total Recoverable Hydrocarbons	Sydney	Jun 03, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40 Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jun 03, 2020	14 Days
- Method: LTM-ORG-2010 TRH C6-C40 BTEX	Sydney	Jun 03, 2020	14 Days

- Method: LTM-ORG-2010 TRH C6-C40

Page 6 of 19

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Address:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Report #:

Sydney Unit F3, Building F

16 Mars Road

723044

02 8584 8888

Phone: Fax:

02 8584 8800

Received: May 29, 2020 4:20 PM

New Zealand

Due: Jun 5, 2020 **Priority:** 5 Day

Contact Name: Ian Batterley

Eurofins Analytical Services Manager: Alena Bounkeua

			mple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
	ourne Laborato														
	ney Laboratory		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
	bane Laborator														
		NATA Site # 237	36												
	rnal Laboratory			1											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	SS01_0.2	May 26, 2020		Soil	S20-Jn02104	Х		Х				Х		Х	
2	SS02_0.2	May 26, 2020		Soil	S20-Jn02105	Х		Х				Χ		Χ	
3	SS03_0.2	May 26, 2020		Soil	S20-Jn02106	Х		Х				Χ		Χ	
4	SS04_0.2	May 26, 2020		Soil	S20-Jn02107	Х		Х				Χ		Χ	
5	SS05_0.2	May 26, 2020		Soil	S20-Jn02108	Х		Х				Χ		Χ	
6	SS06_0.2	May 26, 2020		Soil	S20-Jn02109	Х		Х				Х		Х	
7	SS07_0.2	May 26, 2020		Soil	S20-Jn02110	Х		Х				Х		Х	
8	SS08_0.2	May 26, 2020		Soil	S20-Jn02111	Х		Х				Х		Χ	
9	SS09_0.2	May 26, 2020		Soil	S20-Jn02112	Х		Х				Х		Χ	
10	SS10_0.2	May 26, 2020		Soil	S20-Jn02113	Х		Х				Χ		Χ	

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Jun 5, 2020

Ian Batterley

5 Day

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Phone:

Report #:

723044 02 8584 8888

02 8584 8800 Fax:

Sydney

Contact Name:

May 29, 2020 4:20 PM

Eurofins Analytical Services Manager: Alena Bounkeua

			ple Detail	74		Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
	oourne Laboratory - NATA Site # 1254 & 14271 ney Laboratory - NATA Site # 18217					Х	Х	Х	Х	Х	Х	Х	Х	Х	X
	Iney Laboratory - NATA Site # 1234 & 14271 sbane Laboratory - NATA Site # 20794														$\stackrel{\frown}{\vdash}$
		NATA Site # 2373													
11	SS11_0.2	May 26, 2020		Soil	S20-Jn02114	Х		Х				х		Х	
12	SS12_0.2	May 26, 2020		Soil	S20-Jn02115	Х		Х				Х		Х	
13	SS13_0.2	May 26, 2020		Soil	S20-Jn02116	Х		Х				Х		Х	
14	SS14_0.2	May 26, 2020		Soil	S20-Jn02117	Х		Х				Х		Х	
15	SS15_0.2	May 26, 2020		Soil	S20-Jn02118	Х		Х				Х		Х	
16	SS16_0.2	May 26, 2020		Soil	S20-Jn02119	Х		Х				Х		Х	
17	SS17_0.2	May 26, 2020		Soil	S20-Jn02120	Х		Х				Х		Х	
18	SS18_0.2	May 26, 2020		Soil	S20-Jn02121	Х		Х				Х		Х	
19	SS19_0.2	May 26, 2020		Soil	S20-Jn02122	Х		Х				Х		Х	
20	SS20_0.2	May 26, 2020		Soil	S20-Jn02123	Х		Х				Х		Х	
21	SS21_0.2	May 26, 2020		Soil	S20-Jn02124	Х		Х				Х		Х	
22	SS22_0.2	May 26, 2020		Soil	S20-Jn02125	Х		Х				Х		Х	
23	SS23_0.2	May 26, 2020		Soil	S20-Jn02126	Х		Х				Х		Х	

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Phone:

Report #:

Sydney

723044 02 8584 8888 02 8584 8800

Fax:

Received: May 29, 2020 4:20 PM Due: Jun 5, 2020

Priority: 5 Day

Contact Name: Ian Batterley

Eurofins Analytical Services Manager: Alena Bounkeua

New Zealand

		Sa	mple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	271											
	ney Laboratory					Х	X	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laboratory														\vdash
	h Laboratory - N		36	I	000 1 00100							.,			\vdash
24	SS24_0.2	May 26, 2020		Soil	S20-Jn02127	X		Х				X		X	\vdash
25	SS25_0.2	May 26, 2020		Soil	S20-Jn02128	Х		Х				Х		Х	\vdash
26	DOI_2020052	May 26, 2020		Soil	S20-Jn02129	х		х				х		Х	
27	TOI_20200526	May 26, 2020		Soil	S20-Jn02130					Х					
28	ROI_2020052 6	May 26, 2020		Water	S20-Jn02131		х		х				Х		
29	DOI_2020052 7	May 27, 2020		Soil	S20-Jn02132	Х		Х				Х		Х	
30	ROI_2020052 7	May 27, 2020		Water	S20-Jn02133		Х		Х				Х		
31	TOI_20200527	May 27, 2020		Soil	S20-Jn02134					Х					
32	DOI_2020052 8	May 27, 2020		Soil	S20-Jn02135	Х		Х				Х		Х	

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Report #: Phone:

723044 02 8584 8888

Sydney

Fax:

02 8584 8800

Received: May 29, 2020 4:20 PM

Due: Jun 5, 2020 **Priority:** 5 Day

Contact Name: Ian Batterley

Eurofins Analytical Services Manager: Alena Bounkeua

		Sa	mple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
	oourne Laborato			271											
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator	•													
	h Laboratory - N		36	1											
33	ROI_2020052 8	May 28, 2020		Water	S20-Jn02136		Х		Х				Х		
34	SS26_0.2	May 27, 2020		Soil	S20-Jn02137	Х		Х				Χ		Х	
35	SS27_0.2	May 27, 2020		Soil	S20-Jn02138	Х		Х				Χ		Χ	
36	SS28_0.2	May 27, 2020		Soil	S20-Jn02139	Х		Х				Χ		Χ	
37	SS29_0.2	May 27, 2020		Soil	S20-Jn02140	Х		Х				Χ		Х	
38	SS30_0.1	May 27, 2020		Soil	S20-Jn02141	Х		Х				Χ		Χ	
39	SS31_0.1	May 27, 2020		Soil	S20-Jn02142	Х		Х				Χ		Х	
40	SS32_0.1	May 27, 2020		Soil	S20-Jn02143	Х		Х				Х		Х	
41	SS33_0.1	May 27, 2020		Soil	S20-Jn02144	Х		Х				Х		Х	
42	SS34_0.1	May 27, 2020		Soil	S20-Jn02145	Х		Х				Х		Х	
43	SS35_0.1	May 27, 2020		Soil	S20-Jn02146	Х		Х				Х		Х	
44	SS36_0.1	May 27, 2020		Soil	S20-Jn02147	Х		Х				Χ		Х	

ABN - 50 005 085 521

Address:

Company Name:

Level 15, 309 Kent St

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Report #: Phone:

Fax:

723044 02 8584 8888

02 8584 8800

Received: May 29, 2020 4:20 PM

Due: Jun 5, 2020 **Priority:** 5 Day **Contact Name:** Ian Batterley

Eurofins Analytical Services Manager: Alena Bounkeua

Order No.:

Sydney

ERM Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

	Sample Detail elbourne Laboratory - NATA Site # 1254 & 14271 ydney Laboratory - NATA Site # 18217						Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
Mel	bourne Labora													
Syd	ney Laborato	ry - NATA Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborat	ory - NATA Site # 20794												
Per	th Laboratory	- NATA Site # 23736												
45	SS37_0.1	May 27, 2020	Soil	S20-Jn02148	Х		Х				Х		Х	
46	SS38_0.1	May 27, 2020	Soil	S20-Jn02149	Х		Х				Х		Х	
47	SS39_0.1	May 27, 2020	Soil	S20-Jn02150	Х		Х				Х		Х	
48	SS40_0.1	May 27, 2020	Soil	S20-Jn02151	Х		Х				Х		Х	
49	SS41_0.2	May 27, 2020	Soil	S20-Jn02152	Х		Х				Х		Х	
50	SS42_0.2	May 27, 2020	Soil	S20-Jn02153	Х		Х				Х		Х	
51	SS43_0.2	May 27, 2020	Soil	S20-Jn02154	Х		Х				Х		Х	
52	SS44_0.2	May 27, 2020	Soil	S20-Jn02155	Х		Х				Х		Х	
53	SS45_0.2	May 27, 2020	Soil	S20-Jn02156	Х		Х				Х		Х	
54	SS46_0.1	May 27, 2020	Soil	S20-Jn02157	Х		Х				Х		Х	
55	SS47_0.1	May 27, 2020	Soil	S20-Jn02158	Х		Х				Х		Х	
56	SS48_0.2	May 27, 2020	Soil	S20-Jn02159	Х		Х				Х		Х	
57	SS49_0.2	May 27, 2020	Soil	S20-Jn02160	Х		Χ				Х		Χ	

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327

IANZ # 1290

Company Name:

Address:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Phone:

Report #:

723044 02 8584 8888

02 8584 8800 Fax:

Sydney

Jun 5, 2020 **Priority:** 5 Day

Contact Name: Ian Batterley

Eurofins Analytical Services Manager: Alena Bounkeua

New Zealand

May 29, 2020 4:20 PM

			mple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
		ory - NATA Site		271											
		- NATA Site # 18				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
		y - NATA Site # NATA Site # 237													
58	SED05	May 28, 2020	30	Soil	S20-Jn02161	х		Х				Х		Х	
59	SW05	May 28, 2020		Water	S20-Jn02162		х		Х				Х		
60	SED06	May 28, 2020		Soil	S20-Jn02163	Х		Х				Х		Х	
61	SW06	May 28, 2020		Water	S20-Jn02164		Х		Х				Х		
62	BH01_0.2	May 28, 2020		Soil	S20-Jn02165	Х		Х				Х		Х	
63	BH01_0.5	May 28, 2020		Soil	S20-Jn02166	Х		Х				Х		Х	
64	BH02_0.2	May 28, 2020		Soil	S20-Jn02167	Х		Х				Х		Х	
65	BH02_0.3	May 28, 2020		Soil	S20-Jn02168	Х		Х				Х		Х	
66	BH03_0.2	May 28, 2020		Soil	S20-Jn02169	Х		Х				Х		Х	
67	BH03_0.5	May 28, 2020		Soil	S20-Jn02170	Х		Х				Х		Х	
68	SS54_0.2	May 28, 2020		Soil	S20-Jn02171	Х		Х				Х		Х	
69	SS50_0.1	May 27, 2020		Soil	S20-Jn02172						Х				
70	SS51_0.2	May 27, 2020		Soil	S20-Jn02173						Х				

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Report #: Phone:

723044 02 8584 8888

02 8584 8800 Fax:

Sydney

Received: May 29, 2020 4:20 PM Due: Jun 5, 2020

New Zealand

Priority: 5 Day

Contact Name: Ian Batterley

Eurofins Analytical Services Manager: Alena Bounkeua

			mple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
-	ourne Laborato			271											
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator														
	h Laboratory - N		30	Soil	S20-Jn02174						Х				
71 72	SS52_0.2 SED01	May 27, 2020 May 27, 2020		Soil	S20-Jn02174						X				-
73	1			Water	S20-Jn02176						X				
74	SW01 SED02	May 27, 2020		Soil	S20-Jn02176						X				
		May 27, 2020									X				
75 76	SW02 SED03	May 27, 2020		Water Soil	S20-Jn02178 S20-Jn02179						X				
77	SW03	May 27, 2020		Water	S20-Jn02179						X				
78	SED04	May 27, 2020 May 27, 2020		Soil	S20-Jn02181						X				-
79	SW04			Water	S20-Jn02182						X				
80	TB (1)	May 27, 2020 May 27, 2020		Soil	S20-Jn02183						_^_				x
81	TB (2)	May 27, 2020		Soil	S20-Jn02184										x
82	TS (1)	May 27, 2020		Soil	S20-Jn02185										x
83	TS (2)	May 27, 2020		Soil	S20-Jn02186										X

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane

Sydney

Perth 1/21 Smallwood Place 2/91 Leach Highway Murarrie QLD 4172 Kewdale WA 6105 Phone: +61 7 3902 4600 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Report #:

723044 02 8584 8888

Phone: Fax:

02 8584 8800

Received: Due:

May 29, 2020 4:20 PM Jun 5, 2020

New Zealand

Priority: 5 Day

Contact Name: Ian Batterley

Eurofins Analytical Services Manager: Alena Bounkeua

		Sa	mple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	71											
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794												
Pert	h Laboratory - I	NATA Site # 237	36												
84	SS53_0.1	May 26, 2020		Soil	S20-Jn02208						Х				
85	SS55_0.2	May 26, 2020		Soil	S20-Jn02209						Х				
Test	Counts							61	5	2	13	61	5	61	4

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank								
Heavy Metals								
Antimony			mg/kg	< 10		10	Pass	
Arsenic			mg/kg	<2		2	Pass	
Lead			mg/kg	< 5		5	Pass	
Method Blank								
Total Recoverable Hydrocarbons -	· 2013 NEPM Fract	tions						
Naphthalene			mg/kg	< 0.5		0.5	Pass	
TRH C6-C10			mg/kg	< 20		20	Pass	
Method Blank			<u> </u>	-	'			
Total Recoverable Hydrocarbons -	· 1999 NEPM Fract	tions						
TRH C6-C9			mg/kg	< 20		20	Pass	
Method Blank			mg/kg	1 120		20	1 400	
BTEX								
Benzene			mg/kg	< 0.1		0.1	Pass	
Toluene			mg/kg	< 0.1		0.1	Pass	
Ethylbenzene			mg/kg	< 0.1		0.1	Pass	
						0.1	Pass	
m&p-Xylenes o-Xylene			mg/kg mg/kg	< 0.2 < 0.1		0.2	Pass	
Xylenes - Total*			mg/kg	< 0.3		0.3	Pass	
LCS - % Recovery								
Heavy Metals			2/	400		70.400	_	
Antimony			%	100		70-130	Pass	
Arsenic			%	102		70-130	Pass	
Lead			%	107		70-130	Pass	
LCS - % Recovery					T T			
Total Recoverable Hydrocarbons -	· 2013 NEPM Fract	tions						
Naphthalene			%	86		70-130	Pass	
TRH C6-C10			%	71		70-130	Pass	
LCS - % Recovery					1		Г	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions						
TRH C6-C9			%	74		70-130	Pass	
LCS - % Recovery								
BTEX								
Benzene			%	84		70-130	Pass	
Toluene			%	85		70-130	Pass	
Ethylbenzene			%	84		70-130	Pass	
m&p-Xylenes			%	88		70-130	Pass	
o-Xylene			%	85		70-130	Pass	
Xylenes - Total*			%	87		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Heavy Metals				Result 1				
Antimony	S20-Jn02109	CP	%	116		70-130	Pass	
Arsenic	S20-Jn02109	CP	%	117		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Antimony	S20-Jn02129	CP	%	118		70-130	Pass	
Arsenic	S20-Jn02129	CP	%	120		70-130	Pass	
Lead	S20-Jn02129	CP	%	104		70-130	Pass	
Spike - % Recovery	,		, , , ,		<u> </u>			

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Heavy Metals	1	J GGU.GG		Result 1			2		0000
Antimony	S20-Jn02152	CP	%	120			70-130	Pass	
Arsenic	S20-Jn02152	CP	%	120			70-130	Pass	
Lead	S20-Jn02152	CP	%	117			70-130	Pass	
Spike - % Recovery								1 3,00	
Total Recoverable Hydrocarbons -	· 2013 NEPM Fract	ions		Result 1					
Naphthalene	S20-My44898	NCP	%	80			70-130	Pass	
TRH C6-C10	S20-Jn04810	NCP	%	70			70-130	Pass	
Spike - % Recovery				-					
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C6-C9	S20-Jn04810	NCP	%	70			70-130	Pass	
Spike - % Recovery	020 0.10 10 10						10.00	. 400	
BTEX				Result 1					
Benzene	S20-My44898	NCP	%	71			70-130	Pass	
Toluene	S20-My44898	NCP	%	72			70-130	Pass	
Ethylbenzene	S20-My44898	NCP	%	73			70-130	Pass	
m&p-Xylenes	S20-My44898	NCP	%	77			70-130	Pass	
o-Xylene	S20-My44898	NCP	%	73			70-130	Pass	
Xylenes - Total*	S20-My44898	NCP	%	76			70-130	Pass	
_	•	QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Antimony	S20-Jn02108	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	S20-Jn02108	CP	mg/kg	7.0	7.2	3.0	30%	Pass	
Lead	S20-Jn02108	CP	mg/kg	15	19	21	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Jn02108	CP	%	8.1	7.6	6.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Antimony	S20-Jn02118	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	S20-Jn02118	CP	mg/kg	3.5	3.1	11	30%	Pass	
Lead	S20-Jn02118	CP	mg/kg	12	10	15	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Jn02118	CP	%	7.5	7.6	2.0	30%	Pass	
Duplicate									
	_			Result 1	Result 2	RPD			
% Moisture	S20-Jn02128	CP	%	8.3	9.5	13	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Antimony	S20-Jn02141	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	S20-Jn02141	CP	mg/kg	8.9	6.0	38	30%	Fail	Q15
Lead	S20-Jn02141	CP	mg/kg	32	35	9.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Jn02141	CP	%	8.9	8.2	8.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Antimony	S20-Jn02151	СР	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	S20-Jn02151	CP	mg/kg	3.6	4.2	18	30%	Pass	
Lead	S20-Jn02151	CP	mg/kg	23	28	21	30%	Pass	
	, ===========								
Duplicate									
Duplicate				Result 1	Result 2	RPD			

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Antimony	S20-Jn02161	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	S20-Jn02161	CP	mg/kg	2.9	3.4	15	30%	Pass	
Lead	S20-Jn02161	CP	mg/kg	10	14	30	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Jn02161	CP	%	66	67	1.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S20-Jn00534	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S20-Jn00534	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S20-Jn00534	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S20-Jn00534	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S20-Jn00534	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S20-Jn00534	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S20-Jn00534	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S20-Jn00534	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S20-Jn00534	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	

Page 18 of 19

Report Number: 723044-S-V2

Comments

This report has been revised (V2) to amend sample name for S20-Jn02171.

Sample Integrity

······································	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Alena Bounkeua Analytical Services Manager Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ERM Sydney Level 15, 309 Kent St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Page 1 of 13

Attention: Ian Batterley

723044-W-V2 Report

BERMAGUI BASELINE CONTAMINATION Project name

Project ID 555344 Received Date May 29, 2020

Client Sample ID				ROI_20200526	ROI_20200527	ROI_20200528	SW05
Sample Matrix				Water	Water	Water	Water
Eurofins Sample No.				S20-Jn02131	S20-Jn02133	S20-Jn02136	S20-Jn02162
Date Sampled				May 26, 2020	May 27, 2020	May 28, 2020	May 28, 2020
Test/Reference	LC	R	Unit				
Heavy Metals							
Antimony (filtered)	0.0	05	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Arsenic (filtered)	0.0	01	mg/L	< 0.001	< 0.001	< 0.001	0.001
Lead (filtered)	0.0	01	mg/L	< 0.001	< 0.001	< 0.001	0.002

Client Sample ID Sample Matrix Eurofins Sample No.			SW06 Water S20-Jn02164
Date Sampled			May 28, 2020
Test/Reference	LOR	Unit	
Heavy Metals			
Antimony (filtered)	0.005	mg/L	< 0.005
Arsenic (filtered)	0.001	mg/L	0.001
Lead (filtered)	0.001	mg/L	0.001

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeHeavy Metals (filtered)SydneyJun 02, 2020180 Days

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

Report Number: 723044-W-V2

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

Address:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Report #:

723044 02 8584 8888

Phone: Fax:

02 8584 8800

Received: May 29, 2020 4:20 PM

New Zealand

Auckland

IANZ # 1327

Due: Jun 5, 2020 **Priority:** 5 Day

Contact Name: Ian Batterley

			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH			
		ory - NATA Site													
		- NATA Site # 1				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
		y - NATA Site #													
	rnal Laboratory - r	NATA Site # 237 ,	30												
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID										
	Campio 12	Campio Dato	Time	Matrix	2,13,13										
1	SS01_0.2	May 26, 2020		Soil	S20-Jn02104	Х		Х				Х		Χ	
2	SS02_0.2	May 26, 2020		Soil	S20-Jn02105	Х		Х				Х		Х	
3	SS03_0.2	May 26, 2020		Soil	S20-Jn02106	Х		Х				Х		Χ	
4	SS04_0.2	May 26, 2020		Soil	S20-Jn02107	Х		Х				Х		Χ	
5	SS05_0.2	May 26, 2020		Soil	S20-Jn02108	Х		Х				Х		Χ	
6	SS06_0.2	May 26, 2020		Soil	S20-Jn02109	Х		Х				Х		Χ	
7	SS07_0.2	May 26, 2020		Soil	S20-Jn02110	Х		Х				Х		Χ	
8	SS08_0.2	May 26, 2020		Soil	S20-Jn02111	Х		Х				Х		Χ	
9	SS09_0.2	May 26, 2020		Soil	S20-Jn02112	Х		Х				Х		Χ	
10	SS10_0.2	May 26, 2020	S20-Jn02113	Х		Х				Х		Х			

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Phone: 0800 856 450 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Report #:

723044 02 8584 8888

Sydney

16 Mars Road

Phone: Fax:

02 8584 8800

Received: May 29, 2020 4:20 PM

New Zealand

Due: Jun 5, 2020 **Priority:** 5 Day

Contact Name: Ian Batterley

	Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail						Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
				271											
						Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
		ry - NATA Site #													
Pert		NATA Site # 237	736												
11	SS11_0.2	May 26, 2020		Soil	S20-Jn02114	Х		Х				Х		Χ	
12	SS12_0.2	May 26, 2020		Soil	S20-Jn02115	Х		Х				Х		Χ	
13	SS13_0.2	May 26, 2020		Soil	S20-Jn02116	Х		Х				Х		Х	
14	SS14_0.2	May 26, 2020		Soil	S20-Jn02117	Х		Х				Х		Х	
15	SS15_0.2	May 26, 2020		Soil	S20-Jn02118	Х		Х				Х		Χ	
16	SS16_0.2	May 26, 2020		Soil	S20-Jn02119	Х		Х				Х		Х	
17	SS17_0.2	May 26, 2020		Soil	S20-Jn02120	Х		Х				Х		Х	
18	SS18_0.2	May 26, 2020		Soil	S20-Jn02121	Х		Х				Х		Х	
19	SS19_0.2	May 26, 2020		Soil	S20-Jn02122	Х		Х				Х		Х	
20	SS20_0.2	May 26, 2020		Soil	S20-Jn02123	Х		Х				Х		Х	
21	SS21_0.2	May 26, 2020		Soil	S20-Jn02124	Х		Х				Х		Х	
22	SS22_0.2	May 26, 2020		Soil	S20-Jn02125	Х		Х				Х		Х	
23	SS23_0.2	May 26, 2020		Soil	S20-Jn02126	Х		Х				Х		Х	

ABN - 50 005 085 521

Address:

Company Name:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ERM Sydney Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.: Report #:

723044

Phone: 02 8584 8888 02 8584 8800 Fax:

Sydney

Brisbane

Received: May 29, 2020 4:20 PM

Due: Jun 5, 2020 **Priority:** 5 Day

Contact Name: Ian Batterley

		Sai	mple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271											
Sydı	ney Laboratory	- NATA Site # 1	3217			Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794												
Pert	h Laboratory - N		36	_											
24	SS24_0.2	May 26, 2020		Soil	S20-Jn02127	Х		Х				Χ		Х	
25	SS25_0.2	May 26, 2020		Soil	S20-Jn02128	Х		Х				Χ		Х	
26	DOI_2020052 6	May 26, 2020		Soil	S20-Jn02129	Х		Х				Х		Х	
27	TOI_20200526	May 26, 2020		Soil	S20-Jn02130					Х					
28	ROI_2020052 6	May 26, 2020		Water	S20-Jn02131		х		х				х		
29	DOI_2020052 7	May 27, 2020		Soil	S20-Jn02132	х		х				х		х	
30	ROI_2020052 7	May 27, 2020		Water	S20-Jn02133		Х		Х				Х		
31	TOI_20200527	May 27, 2020		Soil	S20-Jn02134					Х					
32	DOI_2020052 8	May 27, 2020		Soil	S20-Jn02135	Х		Х				Х		х	

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Report #:

723044 02 8584 8888

Sydney

16 Mars Road

Phone: Fax:

02 8584 8800

Received: May 29, 2020 4:20 PM

New Zealand

Due: Jun 5, 2020 **Priority:** 5 Day

Contact Name: Ian Batterley

		Sa	mple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
Melt	ourne Laborato	ory - NATA Site	# 1254 & 142	271											
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA Site #	20794												
Pert	h Laboratory - N	IATA Site # 237	36	1											
33	ROI_2020052 8	May 28, 2020		Water	S20-Jn02136		х		х				Х		
34	SS26_0.2	May 27, 2020		Soil	S20-Jn02137	Х		Х				Х		Х	
35	SS27_0.2	May 27, 2020		Soil	S20-Jn02138	Х		Х				Х		Χ	
36	SS28_0.2	May 27, 2020		Soil	S20-Jn02139	Х		Х				Х		Х	
37	SS29_0.2	May 27, 2020		Soil	S20-Jn02140	Х		Х				Х		Х	
38	SS30_0.1	May 27, 2020		Soil	S20-Jn02141	Х		Х				Х		Х	
39	SS31_0.1	May 27, 2020		Soil	S20-Jn02142	Х		Х				Х		Х	
40	SS32_0.1	May 27, 2020		Soil	S20-Jn02143	Х		Х				Х		Х	
41	SS33_0.1	May 27, 2020		Soil	S20-Jn02144	Х		Х				Х		Х	
42	SS34_0.1	May 27, 2020		Soil	S20-Jn02145	Х		Х				Х		Х	
43	SS35_0.1	May 27, 2020		Soil	S20-Jn02146	Х		Х				Х		Х	
44	SS36_0.1	May 27, 2020		Soil	S20-Jn02147	Х		Х				Х		Χ	

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Phone:

Report #:

723044 02 8584 8888 02 8584 8800

Fax:

Sydney

Contact Name:

Eurofins Analytical Services Manager: Alena Bounkeua

5 Day

New Zealand

Jun 5, 2020

Ian Batterley

May 29, 2020 4:20 PM

	Sample Detail Ibourne Laboratory - NATA Site # 1254 & 14271 Idney Laboratory - NATA Site # 18217							Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
				71											
						Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
		ry - NATA Site # 2													
	,	NATA Site # 2373	36												
45	SS37_0.1	May 27, 2020		Soil	S20-Jn02148	Х		Х				Х		Χ	
46	SS38_0.1	May 27, 2020		Soil	S20-Jn02149	Х		Х				Х		Χ	
47	SS39_0.1	May 27, 2020		Soil	S20-Jn02150	Х		Х				Х		Х	
48	SS40_0.1	May 27, 2020		Soil	S20-Jn02151	Х		Х				Х		Х	
49	SS41_0.2	May 27, 2020		Soil	S20-Jn02152	Х		Х				Х		Χ	
50	SS42_0.2	May 27, 2020		Soil	S20-Jn02153	Х		Х				Х		Χ	
51	SS43_0.2	May 27, 2020		Soil	S20-Jn02154	Х		Х				Х		Χ	
52	SS44_0.2	May 27, 2020		Soil	S20-Jn02155	Х		Х				Х		Х	
53	SS45_0.2	May 27, 2020		Soil	S20-Jn02156	Х		Х				Х		Х	
54	SS46_0.1	May 27, 2020		Soil	S20-Jn02157	Х		Х				Х		Х	
55	SS47_0.1	May 27, 2020		Soil	S20-Jn02158	Х		Х				Х		Х	
56	SS48_0.2	S20-Jn02159	Х		Х				Х		Х				
57	SS49_0.2	May 27, 2020		Soil	S20-Jn02160	Х		Х				Х		Х	

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Due:

Auckland Christchurch 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290

May 29, 2020 4:20 PM

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Phone:

Report #:

723044 02 8584 8888

02 8584 8800 Fax:

Sydney

Unit F3, Building F

16 Mars Road

Contact Name:

Eurofins Analytical Services Manager: Alena Bounkeua

5 Day

New Zealand

Jun 5, 2020

Ian Batterley

			mple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
	ourne Laborate			271											
	ney Laboratory					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	bane Laborator														
58	h Laboratory - I SED05	May 28, 2020	30	Soil	S20-Jn02161	Х		Х				Х		Х	
59	SW05	May 28, 2020		Water	S20-Jn02162		Х		Х				Х	^	
60	SED06	May 28, 2020		Soil	S20-Jn02163	х		Х				Х		Х	
61	SW06	May 28, 2020		Water	S20-Jn02164		X		Х				X		
62	BH01_0.2	May 28, 2020		Soil	S20-Jn02165	Х		х				Х		Х	
63	BH01_0.5	May 28, 2020		Soil	S20-Jn02166	Х		Х				Х		Х	
64	BH02_0.2	May 28, 2020		Soil	S20-Jn02167	Х		Х				Х		Х	
65	BH02_0.3	May 28, 2020		Soil	S20-Jn02168	Х		Х				Х		Х	
66	BH03_0.2	May 28, 2020		Soil	S20-Jn02169	Х		Х				Х		Х	
67	BH03_0.5	May 28, 2020		Soil	S20-Jn02170	Х		Х				Х		Х	
68	SS54_0.2	May 28, 2020		Soil	S20-Jn02171	Х		Х				Х		Х	
69	SS50_0.1	May 27, 2020		Soil	S20-Jn02172						Х				
70	SS51_0.2	May 27, 2020		Soil	S20-Jn02173						Χ				

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Sydney

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Report #:

723044 02 8584 8888

Phone: Fax:

02 8584 8800

Received: May 29, 2020 4:20 PM

New Zealand

Due: Jun 5, 2020 **Priority:** 5 Day

Contact Name: Ian Batterley

			nple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
		ory - NATA Site		271											
		/ - NATA Site # 18				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
		ry - NATA Site #													
		NATA Site # 237	36	l	T										
71	SS52_0.2	May 27, 2020		Soil	S20-Jn02174						Х				
72	SED01	May 27, 2020		Soil	S20-Jn02175						Х				
73	SW01	May 27, 2020		Water	S20-Jn02176						Х				
74	SED02	May 27, 2020		Soil	S20-Jn02177						Х				
75	SW02	May 27, 2020		Water	S20-Jn02178						Х				
76	SED03	May 27, 2020		Soil	S20-Jn02179						Х				
77	SW03	May 27, 2020		Water	S20-Jn02180						Х				
78	SED04	May 27, 2020		Soil	S20-Jn02181						Х				
79	SW04	May 27, 2020		Water	S20-Jn02182						Х				
80	TB (1)	May 27, 2020		Soil	S20-Jn02183										Х
81	TB (2)	May 27, 2020		Soil	S20-Jn02184										Х
82	TS (1)	May 27, 2020		Soil	S20-Jn02185										Х
83	TS (2)	May 27, 2020		Soil	S20-Jn02186										Х

Littlionnen

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736
 Auckland
 Christchurch

 35 O'Rorke Road
 43 Detroit Drive

 Penrose, Auckland 1061
 Rolleston, Christchurch 7675

 Phone: +64 9 526 45 51
 Phone: 0800 856 450

 IANZ # 1327
 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Address:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

BERMAGUI BASELINE CONTAMINATION

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Project ID:

555344

Order No.:

Report #:

Sydney

723044 02 8584 8888

Phone: Fax:

02 8584 8800

Received: May 29, 2020 4:20 PM

Due: Jun 5, 2020 Priority: 5 Day

Contact Name: Ian Batterley

Eurofins Analytical Services Manager: Alena Bounkeua

New Zealand

		Sa	mple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	CANCELLED	HOLD	Lead	Lead (filtered)	Moisture Set	BTEXN and Volatile TRH
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71											
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bris	bane Laboratory	y - NATA Site #	20794												
Pert	h Laboratory - N	IATA Site # 237	36												
84	SS53_0.1	May 26, 2020		Soil	S20-Jn02208						Х				
85	SS55_0.2	May 26, 2020		Soil	S20-Jn02209						Х				
Test	Counts					61	5	61	5	2	13	61	5	61	4

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Antimony (filtered)			mg/L	< 0.005			0.005	Pass	
Arsenic (filtered)			mg/L	< 0.001			0.001	Pass	
Lead (filtered)			mg/L	< 0.001			0.001	Pass	
LCS - % Recovery									
Heavy Metals									
Antimony (filtered)			%	114			70-130	Pass	
Arsenic (filtered)			%	116			70-130	Pass	
Lead (filtered)			%	114			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Antimony (filtered)	S20-Jn02164	CP	%	104			70-130	Pass	
Arsenic (filtered)	S20-Jn02164	CP	%	114			70-130	Pass	
Lead (filtered)	S20-Jn02164	CP	%	80			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Antimony (filtered)	S20-Jn02131	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Arsenic (filtered)	S20-Jn02131	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	S20-Jn02131	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Page 12 of 13

Report Number: 723044-W-V2

Comments

This report has been revised (V2) to amend sample name for S20-Jn02171.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Alena Bounkeua Analytical Services Manager
Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Page 13 of 13

Report Number: 723044-W-V2

#AU04_Enviro_Sample_NSW

From: Brittany Knight <Brittany.Knight@erm.com>

Sent: Thursday, 4 June 2020 10:07 AM **To:** #AU04_Enviro_Sample_NSW

Cc: Peter Lavelle; lan Batterley; Anne Ashworth

Subject: RE: Eurofins Sample Receipt Advice - Report 723044 : Site BERMAGUI BASELINE

CONTAMINATION (555344)

Follow Up Flag: Follow up Flag Status: Completed

Thanks for that Luca,

Can you please analyse the following for PAH and Soil Parameters, and hold the remainder of **all** samples for ASLP Lead instructions to follow.

				Soil	ASLP
		Metals	PAH	Parameters	Lead
1	SS01	1			
2	SS02			HOLD	
3	SS03	1			
4	SS04			HOLD	
5	SS05	1			
6	SS06	1	1	1	
7	SS07	1			
8	SS08	1			
9	SS09	1	1	1	
10	D01_20200526	1	1	1	
11	SS10	1			
12	SS11	1			
13	SS12	1			
14	SS13	1			
15	SS14	1			
16	SS15			HOLD	
17	SS16	1			
18	SS17			HOLD	
19	SS18	1			
20	SS19	1			
21	SS20	1			
22	SS21	1			
23	SS22	1			
24	SS23	1	1	1	
25	T01_20200526	1	1	1	
26	SS24	1			
27	SS25	1			
28	SS26*	1			
29	SS27	1			
30	SS28	1	1	1	

				•	•
31	SS29	1			
32	SS30	1			
33	SS31	1			
34	SS32	1			
35	SS33	1			
36	SS34	1	1	1	
37	SS35	1			
38	SS36	1			
39	SS37	1	1	1	
40	SS38	1	1	1	
41	SS39	1			
42	SS40	1	1	1	
43	D01_20200527	1	1	1	
44	SS41	1			
45	SS42	1			
46	SS43	1			
47	SS44	1			
48	SS45	1			
49	SS46	1			
50	SS47	1			
51	SS48	1			
52	SS49	1			
53	SS50*	1			
54	SS51	1			
55	SS52	1			
56	SS53	1	1	1	
57	T01_20200527	1	1	1	
58	SS54	1	1	1	
59	SS55	1			
60	SS56	1	1	1	
61	BH01_0.2	1	1	1	
62	BH01_0.5	1	1	1	
63	D01_20200528	1	1	1	
64	BH02_0.2		Н	IOLD	
65	BH02_0.3		Н	IOLD	
66	BH03_0.2	1	1	1	
67	BH03_0.5	1	1	1	
		61	20	20	0

				Soil	ASLP
		Metals	PAH	Parameters	Lead
1	SW01	1			
2	SW02	1	1	1 (TOC/pH)	
3	SW03	1	1	1 (TOC/pH)	
4	SW04	1			
5	SW05	1			
6	SW06	1			
7	SED01	1			

8	SED02	1	1	1	
9	SED03	1	1	1	
10	SED04	1			
11	SED05	1			
12	SED06	1			
13	R01_20200526	1	1		
14	R01_20200527	1	1		
15	R01_20200528	1	1		
		15	7	4	0

Kind regards

Brittany Knight Environmental Scientist

From: EnviroSampleNSW@eurofins.com < EnviroSampleNSW@eurofins.com >

Sent: Wednesday, June 3, 2020 12:38 PM **To:** lan Batterley <lan.Batterley@erm.com>

Cc: Brittany Knight <Brittany.Knight@erm.com>; Peter Lavelle <Peter.Lavelle@erm.com>

Subject: Eurofins Sample Receipt Advice - Report 723044 : Site BERMAGUI BASELINE CONTAMINATION (555344)

Dear Valued Client,

Samples TO1_20200526 and TO1_20200527 sent to ALS

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Luca Dominici Sample Receipt

Eurofins | Environmental Testing

Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA

Phone: +61 02 9900 8421

Email: <u>EnviroSampleNSW@eurofins.com</u> Website:environment.eurofins.com.au

EnviroNote 1098 - Melbourne PFAS Accreditation EnviroNote 1103 - NATA Accreditation for Dioxins for delivering this to the Addressee (s), you are hereby notified that reading, copying, or distributing this message is prohibited. If you have received this electronic mail message in error, please contact us immediately and take the steps necessary to delete the message completely from your computer system. Environmental Resources Management Australia Pty Ltd (ERM) has systems in place to encourage a virus free software environment, however we cannot be liable for any loss or damage, corruption or distortion of electronically transmitted information, or for any changes made to this information during transferral or after receipt by the client.

Please visit ERM's web site: http://www.erm.com. To find out how ERM manages personal data, please review our Privacy Policy

Click here to report this email as spam.

ScannedByWebsenseForEurofins

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 1261 Site # 1254 & 14271 Site # 1261 Site # 18217 Site # 1261 Site # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4472 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Phone: +61 7 3902 4600 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: **ERM Sydney**

Contact name: **Brittany Knight**

ADDITIONAL: BERMAGUI BASELINE CONTAMINATION Project name:

Project ID: 555344 COC number: Not provided

Turn around time: 5 Day

Jun 4, 2020 10:07 AM Date/Time received:

Eurofins reference: 723875

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- **7** Attempt to chill was evident.
- \square Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Alena Bounkeua on Phone : or by e.mail: AlenaBounkeua@eurofins.com

Results will be delivered electronically via e.mail to Brittany Knight - brittany.knight@erm.com.

Note: A copy of these results will also be delivered to the general ERM Sydney email address.

ERM Sydney Level 15, 309 Kent St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Brittany Knight

Report 723875-S

Project name ADDITIONAL: BERMAGUI BASELINE CONTAMINATION

Project ID 555344
Received Date Jun 04, 2020

Client Sample ID			SS06	SS09	D01_20200526	SS23
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Jn08620	S20-Jn08621	S20-Jn08622	S20-Jn08623
Date Sampled			May 26, 2020	May 26, 2020	May 26, 2020	May 26, 2020
Test/Reference	LOR	Unit	, 20, 2020	, 20, 2020	, 20, 2020	, 20, 2020
Polycyclic Aromatic Hydrocarbons	LOIT	Offic				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (inediam bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	81	80	93	96
p-Terphenyl-d14 (surr.)	1	%	95	100	103	106
% Clay	1	%	10	7.0	8.0	11
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	36	29	43	18
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.5	5.4	5.5	5.3
Total Organic Carbon	0.1	%	1.2	7.2	7.1	4.2
% Moisture	1	%	5.8	7.5	7.6	6.9
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	2.2	13	13	5.0

Client Sample ID			SS28	SS34	SS37	SS38
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Jn08625	S20-Jn08626	S20-Jn08627	S20-Jn08628
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	85	103	89	93
p-Terphenyl-d14 (surr.)	1	%	101	113	102	112
% Clay	1	%	14	11	16	14
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	110	18	25	210
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units		4.5	4.8	4.5
Total Organic Carbon	0.1	%	6.6	4.5	3.3	4.5
% Moisture	1	%	21	8.3	13	8.0
Cation Exchange Capacity		/0	21	0.0	13	0.0
Cation Exchange Capacity Cation Exchange Capacity	0.05	meg/100g	6.5	2.5	2.9	4.3
Callon Exchange Capacity	0.05	[IIIeq/100g	J 0.5	2.5	2.9	4.0

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			D01_20200527 Soil S20-Jn08629 May 27, 2020	SS53 Soil S20-Jn08630 May 26, 2020	SS56 Soil S20-Jn08632 May 26, 2020	BH01_0.2 Soil S20-Jn08633 May 28, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			D01_20200527	SS53	SS56	BH01_0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Jn08629	S20-Jn08630	S20-Jn08632	S20-Jn08633
Date Sampled			May 27, 2020	May 26, 2020	May 26, 2020	May 28, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	89	102	105	91
p-Terphenyl-d14 (surr.)	1	%	100	120	128	97
% Clay	1	%	19	10	14	8.0
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	37	41	36	610
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	4.7	5.4	4.8	5.7
Total Organic Carbon	0.1	%	6.4	3.4	5.4	2.2
% Moisture	1	%	20	14	19	4.9
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	4.5	11	4.2	4.6

Client Sample ID			BH01_0.5	D01_20200528	BH03_0.2	BH03_0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Jn08634	S20-Jn08635	S20-Jn08636	S20-Jn08637
Date Sampled			May 28, 2020	May 28, 2020	May 28, 2020	May 28, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	1.4	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	1.7	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.9	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	1.1	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	0.8	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	1.0	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	0.8	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	0.8	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	7.2	< 0.5
2-Fluorobiphenyl (surr.)	1	%	81	108	106	91
p-Terphenyl-d14 (surr.)	1	%	108	117	118	126

Client Sample ID Sample Matrix Eurofins Sample No.			BH01_0.5 Soil S20-Jn08634	D01_20200528 Soil S20-Jn08635	BH03_0.2 Soil S20-Jn08636	BH03_0.5 Soil S20-Jn08637
Date Sampled			May 28, 2020	May 28, 2020	May 28, 2020	May 28, 2020
Test/Reference	LOR	Unit				
% Clay	1	%	9.0	11	14	10
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	23	17	80	57
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	5.5	5.5	4.9	5.1
Total Organic Carbon	0.1	%	1.4	0.9	3.2	2.1
% Moisture	1	%	5.0	5.0	6.1	6.7
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	3.0	3.7	7.0	5.0

Client Sample ID			SED02	SED03	SS40
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S20-Jn08640	S20-Jn08641	S20-Jn17620
Date Sampled			May 27, 2020	May 27, 2020	May 26, 2020
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	71	68	113
p-Terphenyl-d14 (surr.)	1	%	121	112	125
% Clay	1	%	4.0	4.0	14
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	47	1400	27
pH (1:5 Aqueous extract at 25 °C as rec.)	0.1	pH Units		6.7	4.9
Total Organic Carbon	0.1	%	< 0.1	< 0.1	18
% Moisture	1	%	18	19	19
Cation Exchange Capacity	1 1	70	10	19	19
	0.05		0.00	0.00	F 0
Cation Exchange Capacity	0.05	meq/100g	0.90	0.63	5.0

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 15, 2020	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
% Clay	Brisbane	Jun 16, 2020	0 Days
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	Jun 11, 2020	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
Total Organic Carbon	Melbourne	Jun 12, 2020	28 Days
- Method: LTM-INO-4060 Total Organic Carbon in water and soil			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Jun 12, 2020	7 Days
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Jun 15, 2020	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Sydney	Jun 11, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

ADDITIONAL: BERMAGUI BASELINE CONTAMINATION

Project ID: 555344

Order No.:

Report #:

723875

Phone: 02 8584 8888 02 8584 8800 Fax:

Sydney

Eurofins Analytical Services Manager: Alena Bounkeua

New Zealand

Jun 4, 2020 10:07 AM

Jun 12, 2020

Brittany Knight

5 Day

Sample Detail							pH (1:5 Aqueous extract at 25°C as rec.)	pH (at 25°C)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Moisture Set	Cation Exchange Capacity
Melt	ourne Laborato	ory - NATA Site	# 1254 & 142	271					Х		Х	Х
	ney Laboratory						Х	Х		Х	Х	
	bane Laborator	•				Х						
	h Laboratory - N		36									
	rnal Laboratory				_							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	SS06	May 26, 2020		Soil	S20-Jn08620	Х	Х		Х	Х	Х	Х
2	SS09	May 26, 2020		Soil	S20-Jn08621	Х	Х		Х	Х	Х	Х
3	D01_2020052 6	May 26, 2020		Soil	S20-Jn08622	х	Х		Х	Х	Х	х
4	SS23	May 26, 2020		Soil	S20-Jn08623	Х	Х		Х	Х	Х	Х
5	5 SS28 May 27, 2020 Soil S20-Jn08625				Х	Х		Х	Х	Х	Х	
6	S SS34 May 27, 2020 Soil S20-Jn08626				Х	х		Х	Х	Х	Х	
7	SS37 May 27, 2020 Soil S20-Jn08627				Х	Х		Х	Х	Х	Х	
8	SS38	May 27, 2020		Soil	S20-Jn08628	Х	Х		Х	Х	Х	Х
9	D01_2020052 7	May 27, 2020		Soil	S20-Jn08629	х	х		х	х	х	х

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

ADDITIONAL: BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.: Report #:

723875

Phone: Fax:

02 8584 8888

02 8584 8800

Due: Jun 12, 2020 **Priority:** 5 Day

New Zealand

Jun 4, 2020 10:07 AM

Contact Name: Brittany Knight

Sample Detail						% Clay	pH (1:5 Aqueous extract at 25°C as rec.)	pH (at 25°C)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Moisture Set	Cation Exchange Capacity
Melk	ourne Laborato	ory - NATA Site #	1254 & 142	71					Х		Х	Х
Sydi	ney Laboratory	- NATA Site # 18	217				Х	Х		Х	Х	
Bris	bane Laborator	y - NATA Site # 2	0794			Х						
Pert	h Laboratory - N	NATA Site # 2373	6	Г								
10	SS53	May 26, 2020		Soil	S20-Jn08630	Х	Х		Х	Х	Х	Х
11	SS56	May 26, 2020		Soil	S20-Jn08632	Х	Х		Х	Х	Х	Х
12	BH01_0.2	May 28, 2020		Soil	S20-Jn08633	Х	Х		Х	Х	Х	Х
13	BH01_0.5	May 28, 2020		Soil	S20-Jn08634	Х	Х		Х	Х	Х	Х
14	D01_2020052 8	May 28, 2020		Soil	S20-Jn08635	х	х		х	х	х	Х
15	BH03_0.2	May 28, 2020		Soil	S20-Jn08636	Х	Х		Х	Х	Х	Х
16	BH03_0.5	May 28, 2020		Soil	S20-Jn08637	Х	Х		Х	Х	Х	Х
17	SW02	May 27, 2020		Water	S20-Jn08638			Х	Х	Х		Ш
18	SW03	May 27, 2020		Water	S20-Jn08639			Х	Х	Х		
19	SED02	May 27, 2020		Soil	S20-Jn08640	Х	Х		Х	Х	Х	Х
20	SED03	May 27, 2020		Soil	S20-Jn08641	Х	Х		Х	Х	Х	Х
21	R01_2020052	May 26, 2020		Water	S20-Jn08642					Х		

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Jun 4, 2020 10:07 AM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

ADDITIONAL: BERMAGUI BASELINE CONTAMINATION

Project ID: 555344 Order No.: Report #:

723875

Phone: Fax:

02 8584 8888 02 8584 8800 **Priority: Contact Name:**

Received:

Due:

Jun 12, 2020 5 Day **Brittany Knight**

New Zealand

Sample Detail						% Clay	pH (1:5 Aqueous extract at 25°C as rec.)	pH (at 25°C)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Moisture Set	Cation Exchange Capacity
Melt	ourne Laborato	ory - NATA Site	# 1254 & 142	71					Х		Х	Х
Sydı	ney Laboratory	- NATA Site # 1	8217				Х	Х		Х	Х	
Bris	bane Laborator	y - NATA Site #	20794			Х						
Pert	h Laboratory - N	IATA Site # 237	'36									
	6											
22	R01_2020052 7	May 27, 2020		Water	S20-Jn08643					Х		
23	R01_2020052 8	May 28, 2020		Water	S20-Jn08644					х		
24	24 SS40 May 26, 2020 Soil S20-Jn17620						Х		Х	Х	Х	Х
Test	Counts					19	19	2	21	24	19	19

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank								
Polycyclic Aromatic Hydrocarbons	ı							
Acenaphthene			mg/kg	< 0.5		0.5	Pass	
Acenaphthylene			mg/kg	< 0.5		0.5	Pass	
Anthracene			mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene			mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene			mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene			mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene			mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene			mg/kg	< 0.5		0.5	Pass	
Chrysene			mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene			mg/kg	< 0.5		0.5	Pass	
Fluoranthene			mg/kg	< 0.5		0.5	Pass	
Fluorene			mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene			mg/kg	< 0.5		0.5	Pass	
Naphthalene			mg/kg	< 0.5		0.5	Pass	
Phenanthrene			mg/kg	< 0.5		0.5	Pass	
Pyrene			mg/kg	< 0.5		0.5	Pass	
Method Blank			mg/itg	V 0.0		0.0	1 400	
Conductivity (1:5 aqueous extract at	25°C as rec.)		uS/cm	< 10		10	Pass	
Method Blank	20 0 40 100.)		40/0111	<u> </u>		10	1 400	
Cation Exchange Capacity								
Cation Exchange Capacity			meg/100g	< 0.05		0.05	Pass	
LCS - % Recovery			meq/100g	\ 0.03		0.03	1 433	
Polycyclic Aromatic Hydrocarbons								
Acenaphthene	'		%	85		70-130	Pass	
Acenaphthylene			%	91		70-130	Pass	
Anthracene			%	93		70-130	Pass	
			%	83		70-130	Pass	
Benz(a)anthracene Benzo(a)pyrene			%	92		70-130	Pass	
· // /			%					
Benzo(b&j)fluoranthene				89		70-130	Pass	
Benzo(g.h.i)perylene			%	101		70-130	Pass	
Benzo(k)fluoranthene			%	107		70-130	Pass	
Chrysene			%	94		70-130	Pass	
Dibenz(a.h)anthracene			%	90		70-130	Pass	
Fluoranthene			%	95		70-130	Pass	
Fluorene			%	93		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	85		70-130	Pass	
Naphthalene			%	94		70-130	Pass	
Phenanthrene			%	94		70-130	Pass	
Pyrene			%	92		70-130	Pass	
LCS - % Recovery					T T			
Total Organic Carbon			%	102		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons	1			Result 1				
Acenaphthene	S20-Jn08637	CP	%	89		70-130	Pass	
Acenaphthylene	S20-Jn08637	CP	%	97		70-130	Pass	
Anthracene	S20-Jn08637	CP	%	97		70-130	Pass	
Benz(a)anthracene	S20-Jn08637	CP	%	99		70-130	Pass	
Benzo(a)pyrene	S20-Jn08637	СР	%	96		70-130	Pass	

		0.4						D	0
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Benzo(b&j)fluoranthene	S20-Jn08637	CP	%	99			70-130	Pass	
Benzo(g.h.i)perylene	S20-Jn08637	CP	%	103			70-130	Pass	
Benzo(k)fluoranthene	S20-Jn08637	CP	%	100			70-130	Pass	
Chrysene	S20-Jn08637	CP	%	92			70-130	Pass	
Dibenz(a.h)anthracene	S20-Jn08637	CP	%	105			70-130	Pass	
Fluoranthene	S20-Jn08637	CP	%	96			70-130	Pass	
Fluorene	S20-Jn08637	CP	%	104			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S20-Jn08637	CP	%	104			70-130	Pass	
Naphthalene	S20-Jn08637	CP	%	90			70-130	Pass	
Phenanthrene	S20-Jn08637	CP	%	101			70-130	Pass	
Pyrene	S20-Jn08637	CP	%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Acenaphthene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S20-Jn17558	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate					1				
		1		Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	M20-Jn15197	NCP	uS/cm	140	110	23	30%	Pass	
Duplicate									
Cation Exchange Capacity				Result 1	Result 2	RPD			
Cation Exchange Capacity	S20-Jn08620	CP	meq/100g	2.2	2.1	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as	000 1 55555		,,,,		,_	5	0.557		
rec.)	S20-Jn08628	CP	pH Units	4.5	4.5	Pass	30%	Pass	
Total Organic Carbon	S20-Jn08628	CP	%	4.1	4.6	12	30%	Pass	
Duplicate				D	D	DDD			
0/ Ma-i-h	000 1-0000	0.5	0,	Result 1	Result 2	RPD	0001	D-	
% Moisture	S20-Jn08630	CP	%	14	15	7.0	30%	Pass	
Duplicate				D " 1	D 11.0	DDD			
-11 (4.5 A 1 1 2522				Result 1	Result 2	RPD			
pH (1:5 Aqueous extract at 25°C as rec.)	S20-Jn08641	CP	pH Units	6.7	6.7	Pass	30%	Pass	
Total Organic Carbon	S20-Jn08641	CP	%	< 0.1	< 0.1	<1	30%	Pass	
		• -							

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Alena Bounkeua Analytical Services Manager
Andrew Sullivan Senior Analyst-Organic (NSW)
Emily Rosenberg Senior Analyst-Metal (VIC)
Gabriele Cordero Senior Analyst-Inorganic (NSW)
Jonathon Angell Senior Analyst-Inorganic (QLD)
Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ERM Sydney Level 15, 309 Kent St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Brittany Knight

Report 723875-W

Project name ADDITIONAL: BERMAGUI BASELINE CONTAMINATION

Project ID 555344
Received Date Jun 04, 2020

Client Sample ID			SW02	SW03	R01_20200526	R01_20200527
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S20-Jn08638	S20-Jn08639	S20-Jn08642	S20-Jn08643
Date Sampled			May 27, 2020	May 27, 2020	May 26, 2020	May 27, 2020
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	111	124	113	113
p-Terphenyl-d14 (surr.)	1	%	79	78	93	93
pH (at 25°C)	0.1	pH Units	7.0	7.0	-	-
Total Organic Carbon	5	mg/L	14	11	-	-

Client Sample ID Sample Matrix			R01_20200528 Water
Eurofins Sample No.			S20-Jn08644
Date Sampled			May 28, 2020
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001

Client Sample ID Sample Matrix				R01_20200528 Water
Eurofins Sample No.				S20-Jn08644
Date Sampled				May 28, 2020
Test/Reference		LOR	Unit	
Polycyclic Aromatic Hydrocarbons		•		
Benzo(b&j)fluoranthene ^{N07}		0.001	mg/L	< 0.001
Benzo(g.h.i)perylene		0.001	mg/L	< 0.001
Benzo(k)fluoranthene		0.001	mg/L	< 0.001
Chrysene		0.001	mg/L	< 0.001
Dibenz(a.h)anthracene		0.001	mg/L	< 0.001
Fluoranthene		0.001	mg/L	< 0.001
Fluorene		0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene		0.001	mg/L	< 0.001
Naphthalene		0.001	mg/L	< 0.001
Phenanthrene		0.001	mg/L	< 0.001
Pyrene		0.001	mg/L	< 0.001
Total PAH*		0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)		1	%	127
p-Terphenyl-d14 (surr.)	·	1	%	99

Page 2 of 10

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Sydney	Jun 04, 2020	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
pH (at 25°C)	Sydney	Jun 05, 2020	1 Days
- Method: LTM-GEN-7090 pH in water by ISE			
Total Organic Carbon	Melbourne	Jun 09, 2020	28 Days

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

Project ID:

ADDITIONAL: BERMAGUI BASELINE CONTAMINATION

555344

Order No.: Report #:

Phone:

Fax:

723875

Sydney

02 8584 8888

02 8584 8800

Eurofins Analytical Services Manager: Alena Bounkeua

New Zealand

Jun 4, 2020 10:07 AM

Jun 12, 2020

Brittany Knight

5 Day

			mple Detail			% Clay	pH (1:5 Aqueous extract at 25°C as rec.)	pH (at 25°C)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Moisture Set	Cation Exchange Capacity
	ourne Laborato			271					Х		Х	Х
	ney Laboratory						Х	Х	Janic Carbon X X X X X X X X X X X X X		Х	
	bane Laborator					Х						
	h Laboratory - N		36									
	rnal Laboratory											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	SS06	May 26, 2020		Soil	S20-Jn08620	Х	Х		Х	Х	Х	Х
2	SS09	May 26, 2020		Soil	S20-Jn08621	Х	Х		Х	Х	Х	Х
3	D01_2020052 6	May 26, 2020		Soil	S20-Jn08622	х	х		х	х	х	Х
4	SS23	May 26, 2020		Soil	S20-Jn08623	Х	Х		Х	Х	Х	Х
5	SS28	May 27, 2020		Soil	S20-Jn08625	Х	Х		Х	Х	Х	Х
6	SS34	May 27, 2020		Soil	S20-Jn08626	Х	Х		Х	Х	Х	Х
7	SS37	May 27, 2020		Soil	S20-Jn08627	Х	Х		Х	Х	Х	Х
8	SS38	May 27, 2020		Soil	S20-Jn08628	Х	Х		Х	Х	Х	Х
9	D01_2020052 7	May 27, 2020		Soil	S20-Jn08629	Х	х		х	х	х	Х

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

723875

02 8584 8888

02 8584 8800

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

ADDITIONAL: BERMAGUI BASELINE CONTAMINATION

Project ID: 555344

Order No.:

Report #:

Phone:

Fax:

Eurofins Analytical Services Manager: Alena Bounkeua

New Zealand

Jun 4, 2020 10:07 AM

Jun 12, 2020

Brittany Knight

5 Day

			ole Detail		% Clay	pH (1:5 Aqueous extract at 25°C as rec.)	pH (at 25°C)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Moisture Set	Cation Exchange Capacity
Melk	ourne Laborato	ory - NATA Site #	1254 & 14271					Х		Х	Х
Sydi	ney Laboratory	- NATA Site # 182	17			Х	Х		Х	Х	
		y - NATA Site # 20			Х						
	·	NATA Site # 23736	i								
10	SS53	May 26, 2020	Soil	S20-Jn08630	X	Х		Х	Х	Х	X
11	SS56	May 26, 2020	Soil	S20-Jn08632	X	Х		Х	Х	Х	X
12	BH01_0.2	May 28, 2020	Soil	S20-Jn08633	X	Х		Х	Х	Х	Х
13	BH01_0.5	May 28, 2020	Soil	S20-Jn08634	X	Х		Х	Х	Х	Х
14	D01_2020052 8	May 28, 2020	Soil	S20-Jn08635	х	х		х	х	х	Х
15	BH03_0.2	May 28, 2020	Soil	S20-Jn08636	Х	Х		Х	Х	Х	Х
16	BH03_0.5	May 28, 2020	Soil	S20-Jn08637	Х	Х		Х	Х	Х	Х
17	SW02	May 27, 2020	Water	S20-Jn08638			Х	Х	Х		
18	SW03	May 27, 2020	Water	S20-Jn08639			Х	Х	Х		
19	SED02	May 27, 2020	Soil	S20-Jn08640	Х	Х		Х	Х	Х	Х
20	SED03	May 27, 2020	Soil	S20-Jn08641	Х	Х		Х	Х	Х	Х
21	R01_2020052	May 26, 2020	Water	S20-Jn08642					Х		

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Australia

Sydney Unit F3. Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Svdnev

NSW 2000

May 26, 2020

Project Name:

SS40

Test Counts

24

ADDITIONAL: BERMAGUI BASELINE CONTAMINATION

Soil

Project ID: 555344

Order No.: Report #:

Phone:

Fax:

723875

02 8584 8888

02 8584 8800

New Zealand

Jun 4, 2020 10:07 AM

Jun 12, 2020

Brittany Knight

5 Dav

Eurofins Analytical Services Manager: Alena Bounkeua

	Sample Detail						pH (1:5 Aqueous extract at 25°C as rec.)	рН (at 25°C)	Total Organic Carbon	Polycyclic Aromatic Hydrocarbons	Moisture Set	Cation Exchange Capacity	
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271					Х		Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х		Х	Х		
Bris	bane Laborator	y - NATA Site #	20794			Х							
Pert	h Laboratory - N	NATA Site # 237	36										
	6												
22	R01_2020052	May 27, 2020		Water	S20-Jn08643					Х			
23	R01_2020052	S20-Jn08644					Х						

S20-Jn17620

Χ Χ

19 19 Х Χ

21 24 Χ Х

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 723875-W

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Polycyclic Aromatic Hydrocarbons	;								
Acenaphthene			mg/L	< 0.001			0.001	Pass	
Acenaphthylene			mg/L	< 0.001			0.001	Pass	
Anthracene			mg/L	< 0.001			0.001	Pass	
Benz(a)anthracene			mg/L	< 0.001			0.001	Pass	
Benzo(a)pyrene			mg/L	< 0.001			0.001	Pass	
Benzo(b&j)fluoranthene			mg/L	< 0.001			0.001	Pass	
Benzo(g.h.i)perylene			mg/L	< 0.001			0.001	Pass	
Benzo(k)fluoranthene			mg/L	< 0.001			0.001	Pass	
Chrysene			mg/L	< 0.001			0.001	Pass	
Dibenz(a.h)anthracene			mg/L	< 0.001			0.001	Pass	
Fluoranthene			mg/L	< 0.001			0.001	Pass	
Fluorene			mg/L	< 0.001			0.001	Pass	
Indeno(1.2.3-cd)pyrene			mg/L	< 0.001			0.001	Pass	
Naphthalene			mg/L	< 0.001			0.001	Pass	
Phenanthrene			mg/L	< 0.001			0.001	Pass	
Pyrene			mg/L	< 0.001			0.001	Pass	
Method Blank									
Total Organic Carbon			mg/L	< 5			5	Pass	
LCS - % Recovery									
Polycyclic Aromatic Hydrocarbons	3								
Acenaphthene			%	128			70-130	Pass	
Acenaphthylene			%	124			70-130	Pass	
Anthracene			%	119			70-130	Pass	
Benz(a)anthracene			%	112			70-130	Pass	
Benzo(g.h.i)perylene			%	113			70-130	Pass	
Benzo(k)fluoranthene			%	122			70-130	Pass	
Chrysene			%	109			70-130	Pass	
Dibenz(a.h)anthracene			%	113			70-130	Pass	
Fluoranthene			%	126			70-130	Pass	
Fluorene			%	124			70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	96			70-130	Pass	
Naphthalene			%	98			70-130	Pass	
Phenanthrene			%	130			70-130	Pass	
Pyrene			%	127			70-130	Pass	
LCS - % Recovery									
Total Organic Carbon			%	71			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
				Result 1					
Total Organic Carbon	S20-Jn11310	NCP	%	79			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							1		
Polycyclic Aromatic Hydrocarbons	3		Т	Result 1	Result 2	RPD			
Acenaphthene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	1

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocar	bons			Result 1	Result 2	RPD			
Benzo(g.h.i)perylene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S20-Jn13284	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Total Organic Carbon	S20-Jn08638	СР	mg/L	14	9.9	33	30%	Fail	Q15

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

Please note: These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

N07

The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. Q15

Authorised By

Alena Bounkeua Analytical Services Manager Senior Analyst-Organic (NSW) Gabriele Cordero Senior Analyst-Inorganic (NSW) Scott Beddoes Senior Analyst-Inorganic (VIC)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

#AU04_Enviro_Sample_NSW

To: Alena Bounkeua

Subject: RE: *additional analysis* Eurofins Test Results - Report 723044 : Site BERMAGUI

BASELINE CONTAMINATION (555344)

From: Alena Bounkeua

Sent: Wednesday, 10 June 2020 11:22 AM

To: #AU04_Enviro_Sample_NSW

Subject: *additional analysis* Eurofins Test Results - Report 723044 : Site BERMAGUI BASELINE CONTAMINATION

(555344)

Additional analysis please - standard TAT (for now)

Metals - Antimony, Arsenic and Lead

Thanks

Kind Regards,

Alena Bounkeua

Eurofins | Environment Testing

Phone: +61 2 9900 8414 Mobile: +61 429 365 410

Email: AlenaBounkeua@eurofins.com

From: Brittany Knight

Sent: Wednesday, June 10, 2020 9:55 AM

To: AlenaBounkeua@eurofins.com

Cc: Peter Lavelle < Peter.Lavelle@erm.com>; Ian Batterley < Ian.Batterley@erm.com>

Subject: RE: Eurofins Test Results - Report 723044 : Site BERMAGUI BASELINE CONTAMINATION (555344)

Thanks Alena,

The following samples are missing from the report, can you please analyse them for metals:

- SS50
- SS51
- SS52
- SS53
- SS54
- SS55
- SED01
- SED02
- SED03
- SED04SW01
- SW02

- SW03
- SW04

Kind regards

Brittany Knight Environmental Scientist

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Site # 1261 Site # 1254 & 14271 Site # 1261 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 1251 Site # 20794 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: **ERM Sydney**

Contact name: Ian Batterley

ADDITIONAL - BERMAGUI BASELINE CONTAMINATION Project name:

Project ID: 555344 COC number: Not provided

Turn around time: 2 Day

Jun 10, 2020 11:27 AM Date/Time received:

Eurofins reference: 724572

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- **7** Attempt to chill was evident.
- \square Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Alena Bounkeua on Phone : or by e.mail: AlenaBounkeua@eurofins.com

Results will be delivered electronically via e.mail to Ian Batterley - ian.batterley@erm.com.

Note: A copy of these results will also be delivered to the general ERM Sydney email address.

ERM Sydney Level 15, 309 Kent St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ian Batterley

Report 724572-S

Project name ADDITIONAL - BERMAGUI BASELINE CONTAMINATION

Project ID 555344
Received Date Jun 10, 2020

Client Sample ID			SS50_0.1	SS51_0.2	SS52_0.2	SS53_0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Jn14690	S20-Jn14691	S20-Jn14692	S20-Jn14693
Date Sampled			May 27, 2020	May 27, 2020	May 27, 2020	May 26, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	7.2	< 2	2.8	< 2
Lead	5	mg/kg	22	9.1	22	10
% Moisture	1	%	6.4	14	36	15

Client Sample ID			SS55_0.2	SED01	SED02	SED03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S20-Jn14694	S20-Jn14695	S20-Jn14696	S20-Jn14697
Date Sampled			May 26, 2020	May 26, 2020	May 26, 2020	May 26, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Antimony	10	mg/kg	< 10	< 10	< 10	< 10
Arsenic	2	mg/kg	4.2	< 2	< 2	< 2
Lead	5	mg/kg	39	< 5	< 5	< 5
% Moisture	1	%	22	21	15	16

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			SED04 Soil S20-Jn14698 May 26, 2020	SS54_0.2 Soil S20-Jn17122 May 26, 2020
Test/Reference	LOR	Unit		
Heavy Metals		1		
Antimony	10	mg/kg	< 10	< 10
Arsenic	2	mg/kg	2.1	< 2
Lead	5	mg/kg	< 5	18
% Moisture	1	%	18	16

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Sydney	Jun 11, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Jun 11, 2020	14 Days

- Method: LTM-GEN-7080 Moisture

Report Number: 724572-S

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

ADDITIONAL - BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.: Report #:

724572

Sydney

Phone: Fax:

02 8584 8888 02 8584 8800 **Priority: Contact Name:**

Received:

Due:

Jun 12, 2020 2 Day Ian Batterley

Jun 10, 2020 11:27 AM

New Zealand

Eurofins Analytical Services Manager: Alena Bounkeua

		Sa	mple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	Lead	Lead (filtered)	Moisture Set
Melt	ourne Laborate	ory - NATA Site	# 1254 & 142	271								
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	X
		y - NATA Site #										
Pert	h Laboratory - I	NATA Site # 237	'36									
Exte	rnal Laboratory	/										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	SS50_0.1	May 27, 2020		Soil	S20-Jn14690	Х		Х		Х		Х
2	SS51_0.2	May 27, 2020		Soil	S20-Jn14691	Х		Х		Х		Х
3	SS52_0.2	May 27, 2020		Soil	S20-Jn14692	Х		Х		Х		Х
4	SS53_0.1	May 26, 2020		Soil	S20-Jn14693	Х		Х		Х		Х
5	SS55_0.2	May 26, 2020		Soil	S20-Jn14694	Х		Х		Х		Х
6	SED01	May 26, 2020		Soil	S20-Jn14695	Х		Х		Х		Х
7	SED02	May 26, 2020		Soil	S20-Jn14696	Х		Х		Х		Х
8	SED03	May 26, 2020		Soil	S20-Jn14697	Х		Х		Х		Х
9	SED04	May 26, 2020		Soil	S20-Jn14698	Х		Х		Х		Х
10	SW01	May 26, 2020		Water	S20-Jn14699		Х		Х		Х	

Page 3 of 7

ABN - 50 005 085 521

Address:

Company Name:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane

1/21 Smallwood Place

Phone: +61 7 3902 4600

NATA # 1261 Site # 20794

Murarrie QLD 4172

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

ADDITIONAL - BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.:

Report #:

Sydney

724572 02 8584 8888

Phone: Fax:

02 8584 8800

Received:

Jun 10, 2020 11:27 AM

Due: Jun 12, 2020 **Priority:** 2 Day

Contact Name: Ian Batterley

Eurofins Analytical Services Manager: Alena Bounkeua

		Sa	mple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	Lead	Lead (filtered)	Moisture Set
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71								
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Χ	Χ	Χ	Х	Х	Х
Brisl	bane Laboratory	y - NATA Site #	20794									
Perti	h Laboratory - N	IATA Site # 237	36									
11	SW02	May 26, 2020		Water	S20-Jn14700		Х		Χ		Х	
12	SW03	May 26, 2020		Water	S20-Jn14701		Х		Χ		Х	
13	SW04	May 26, 2020		Water	S20-Jn14702		Х		Χ		Х	
14	SS54_0.2	May 26, 2020		Soil	S20-Jn17122	Х		Х		Х		Х
Test	Counts					10	4	10	4	10	4	10

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

т	est		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Antimony			mg/kg	< 10			10	Pass	
Arsenic			mg/kg	< 2			2	Pass	
Lead			mg/kg	< 5			5	Pass	
LCS - % Recovery									
Heavy Metals									
Antimony			%	103			70-130	Pass	
Arsenic			%	110			70-130	Pass	
Lead			%	110			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Antimony	S20-Jn14690	CP	%	116			70-130	Pass	
Arsenic	S20-Jn14690	CP	%	124			70-130	Pass	
Lead	S20-Jn17811	NCP	%	110			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S20-Jn14693	CP	%	15	14	4.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Antimony	S20-Jn17122	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Arsenic	S20-Jn17122	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Lead	S20-Jn17122	CP	mg/kg	18	18	1.0	30%	Pass	

Report Number: 724572-S

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Authorised By

Alena Bounkeua Analytical Services Manager Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 724572-S

ERM Sydney Level 15, 309 Kent St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ian Batterley

Report 724572-W

Project name ADDITIONAL - BERMAGUI BASELINE CONTAMINATION

Project ID 555344
Received Date Jun 10, 2020

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled	LOD	Linia	SW01 Water S20-Jn14699 May 26, 2020	SW02 Water S20-Jn14700 May 26, 2020	SW03 Water S20-Jn14701 May 26, 2020	SW04 Water S20-Jn14702 May 26, 2020
Test/Reference Heavy Metals	LOR	Unit				
Antimony (filtered)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.001
Lead (filtered)	0.001	mg/L	0.003	< 0.001	0.001	0.002

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeHeavy Metals (filtered)SydneyJun 10, 2020180 Days

- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS

Report Number: 724572-W

ABN - 50 005 085 521

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

Address:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

ADDITIONAL - BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.: Report #:

724572

Phone: 02 8584 8888 Fax:

Sydney

02 8584 8800

Received: Jun 10, 2020 11:27 AM

New Zealand

Auckland

Due: Jun 12, 2020 **Priority:** 2 Day

Contact Name: Ian Batterley

Eurofins Analytical Services Manager: Alena Bounkeua

	Sample Detail							Arsenic	Arsenic (filtered)	Lead	Lead (filtered)	Moisture Set
Melt	ourne Laborate	ory - NATA Site	# 1254 & 142	271								
Sydı	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	Х	X
		y - NATA Site #										
Pert	h Laboratory - I	NATA Site # 237	'36									
Exte	rnal Laboratory	/										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	SS50_0.1	May 27, 2020		Soil	S20-Jn14690	Х		Х		Х		Х
2	SS51_0.2	May 27, 2020		Soil	S20-Jn14691	Х		Х		Х		Х
3	SS52_0.2	May 27, 2020		Soil	S20-Jn14692	Х		Х		Х		Х
4	SS53_0.1	May 26, 2020		Soil	S20-Jn14693	Х		Х		Х		Х
5	SS55_0.2	May 26, 2020		Soil	S20-Jn14694	Х		Х		Х		Х
6	SED01	May 26, 2020		Soil	S20-Jn14695	Х		Х		Х		Х
7	7 SED02 May 26, 2020 Soil S20-Jn14696							Х		Х		Х
8	8 SED03 May 26, 2020 Soil S20-Jn14697							Х		Х		Х
9								Х		Х		Х
10	SW01	May 26, 2020		Water	S20-Jn14699		Х		Х		Х	

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ABN - 50 005 085 521

Address:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

ADDITIONAL - BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.: Report #:

Phone:

Fax:

724572

Sydney

02 8584 8888

02 8584 8800

Received: Jun 10, 2020 11:27 AM

New Zealand

Due: Jun 12, 2020 **Priority:** 2 Day

Contact Name: Ian Batterley

Eurofins Analytical Services Manager: Alena Bounkeua

		Sa	mple Detail			Antimony	Antimony (filtered)	Arsenic	Arsenic (filtered)	Lead	Lead (filtered)	Moisture Set
Melb	ourne Laborato	ry - NATA Site	# 1254 & 142	71								
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	Χ	Х	Х	Χ	Х
Brist	oane Laboratory	y - NATA Site #	20794									
Perti	n Laboratory - N	IATA Site # 237	36									
11	SW02	May 26, 2020		Water	S20-Jn14700		Х		Х		Χ	
12	SW03	May 26, 2020		Water	S20-Jn14701		Х		Х		Х	
13	SW04	May 26, 2020		Water	S20-Jn14702		Х		Х		Х	
14	SS54_0.2	May 26, 2020		Soil	S20-Jn17122	Х		Х		Х		Х
Test	Counts					10	4	10	4	10	4	10

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Antimony (filtered)			mg/L	< 0.005			0.005	Pass	
Arsenic (filtered)		mg/L	< 0.001			0.001	Pass		
Lead (filtered)			mg/L	< 0.001			0.001	Pass	
LCS - % Recovery									
Heavy Metals									
Antimony (filtered)			%	100			70-130	Pass	
Arsenic (filtered)			%	103			70-130	Pass	
Lead (filtered)			%	100			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Antimony (filtered)	S20-Jn14702	CP	%	102			70-130	Pass	
Arsenic (filtered)	S20-Jn14702	CP	%	104			70-130	Pass	
Lead (filtered)	S20-Jn14702	CP	%	80			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Antimony (filtered)	S20-Jn14699	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Arsenic (filtered)	S20-Jn14699	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	S20-Jn14699	CP	mg/L	0.003	0.003	2.0	30%	Pass	

Report Number: 724572-W

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised By

Alena Bounkeua Analytical Services Manager Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson

General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

#AU04_Enviro_Sample_NSW

To: Brittany Knight

Subject: RE: Bermagui 0555344 final analysis

From: Brittany Knight [mailto:Brittany.Knight@erm.com]

Sent: Wednesday, 17 June 2020 3:22 PM

To: #AU04_Enviro_Sample_NSW; Alena Bounkeua

Cc: Peter Lavelle; Ian Batterley

Subject: Bermagui 0555344 final analysis

Hello,

Final request for analysis!

Can the following 15 samples please be analysed for ASLP lead with 48 hr turnaround:

- SS09
- SS10
- SS12
- SS16
- SS21
- SS26
- SS29
- SS40
- SS41
- SS43
- SS50
- BH01 0.5
- D01_20200526
- D01_20200527
- D01_20200528

Kind regards

Brittany Knight Environmental Scientist

ERM

Level 15 | 309 Kent St | Sydney NSW 2000 **T** +61 (0)2 8586 8744 | **M** +61 (0) 433 788 322 **E** brittany.knight@erm.com | **W** www.erm.com

ERM The business of sustainability

Please consider the environment before printing this message
Read our 2019 Sustainability Report: From The What to The How and ERM Foundation Annual Review.

Environment Testing Melbourne 6 Monterey Road Dandenong South Vic 3175 16 Mars Road Lane Cove West NSW 2066 NATA # 1261 Site # 1254 & 14271 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: **ERM Sydney**

Contact name: Ian Batterley

ADDITIONAL - BERMAGUI BASELINE CONTAMINATION Project name:

Project ID: 555344 COC number: Not provided

Turn around time: 2 Day

Jun 17, 2020 3:22 PM Date/Time received:

Eurofins reference: 726119

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- \square Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Alena Bounkeua on Phone : or by e.mail: AlenaBounkeua@eurofins.com

Results will be delivered electronically via e.mail to Ian Batterley - ian.batterley@erm.com.

Note: A copy of these results will also be delivered to the general ERM Sydney email address.

ERM Sydney Level 15, 309 Kent St Sydney NSW 2000

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Ian Batterley

Report 726119-L

Project name ADDITIONAL - BERMAGUI BASELINE CONTAMINATION

Project ID 555344
Received Date Jun 17, 2020

Client Sample ID Sample Matrix			SS09 AUS Leachate - Reagent Water	SS10 AUS Leachate - Reagent Water	SS12 AUS Leachate - Reagent Water	SS16 AUS Leachate - Reagent Water
Eurofins Sample No.			S20-Jn27535	S20-Jn27536	S20-Jn27537	S20-Jn27538
Date Sampled			May 26, 2020	May 26, 2020	May 26, 2020	May 26, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	0.01	mg/L	0.02	0.08	0.04	0.21
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (initial)	0.1	pH Units	5.7	5.7	5.7	5.6
pH (Leachate fluid)	0.1	pH Units	5.9	5.9	5.9	5.9
pH (off)	0.1	pH Units	5.6	5.7	5.6	5.2

Client Sample ID			SS21	SS26	SS29	SS40
Sample Matrix			AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water
Eurofins Sample No.			S20-Jn27539	S20-Jn27540	S20-Jn27541	S20-Jn27542
Date Sampled			May 26, 2020	May 26, 2020	May 26, 2020	May 26, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	0.01	mg/L	0.01	< 0.01	0.02	< 0.01
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (initial)	0.1	pH Units	6.0	4.9	5.1	5.6
pH (Leachate fluid)	0.1	pH Units	5.9	5.9	5.9	5.9
pH (off)	0.1	pH Units	6.1	4.2	6.0	5.4

Client Sample ID			SS41	SS43	SS50	BH01_0.5
Sample Matrix			AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water	AUS Leachate - Reagent Water
Eurofins Sample No.			S20-Jn27543	S20-Jn27544	S20-Jn27545	S20-Jn27546
Date Sampled			May 26, 2020	May 26, 2020	May 26, 2020	May 26, 2020
Test/Reference	LOR	Unit				
Heavy Metals						
Lead	0.01	mg/L	0.03	0.06	0.01	0.02
AUS Leaching Procedure						
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0	4.0
pH (initial)	0.1	pH Units	5.5	5.8	5.6	5.8
pH (Leachate fluid)	0.1	pH Units	5.9	5.9	5.9	5.9
pH (off)	0.1	pH Units	5.1	5.5	5.6	5.5

Client Sample ID			D01_20200526 AUS Leachate	D01_20200527 AUS Leachate	D01_20200528 AUS Leachate
Sample Matrix			- Reagent Water	- Reagent Water	- Reagent Water
Eurofins Sample No.			S20-Jn27547	S20-Jn27548	S20-Jn27549
Date Sampled			May 26, 2020	May 26, 2020	May 26, 2020
Test/Reference	LOR	Unit			
Heavy Metals					
Lead	0.01	mg/L	< 0.01	< 0.01	0.01
AUS Leaching Procedure					
Leachate Fluid ^{C01}		comment	4.0	4.0	4.0
pH (initial)	0.1	pH Units	5.6	5.5	5.8
pH (Leachate fluid)	0.1	pH Units	5.9	5.9	5.9
pH (off)	0.1	pH Units	5.7	5.1	5.7

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Sydney	Jun 19, 2020	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
AUS Leaching Procedure	Sydney	Jun 18, 2020	7 Days

Report Number: 726119-L

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Jun 17, 2020 3:22 PM

Jun 19, 2020

Ian Batterley

2 Day

Company Name:

ERM Sydney

Level 15, 309 Kent St

Svdnev

NSW 2000

Project Name:

ADDITIONAL - BERMAGUI BASELINE CONTAMINATION

Project ID:

555344

Order No.: Report #:

726119

Phone: 02 8584 8888 02 8584 8800 Fax:

Eurofins Analytical Services Manager: Alena Bounkeua

New Zealand

		Sa	mple Detail			Lead	AUS Leaching Procedure
		ory - NATA Site		271			
		- NATA Site # 1				Х	Х
		y - NATA Site # NATA Site # 237					
	rnal Laborator		30				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	SS09	May 26, 2020		AUS Leachate - Reagent Water	S20-Jn27535	х	х
2	SS10	May 26, 2020		AUS Leachate - Reagent Water	S20-Jn27536	х	х
3	SS12	May 26, 2020		AUS Leachate - Reagent Water	S20-Jn27537	х	х
4	SS16	May 26, 2020		AUS Leachate - Reagent Water	S20-Jn27538	х	х
5	SS21	May 26, 2020		AUS Leachate	S20-Jn27539	Х	Х

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Fax:

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

ADDITIONAL - BERMAGUI BASELINE CONTAMINATION

Project ID: 555344

Order No.: Received: Jun 17, 2020 3:22 PM Report #: 726119 Due: Jun 19, 2020

Phone: 02 8584 8888 **Priority:** 2 Day 02 8584 8800 **Contact Name:** Ian Batterley

Eurofins Analytical Services Manager: Alena Bounkeua

New Zealand

			iple Detail		Lead	AUS Leaching Procedure
		tory - NATA Site				.,
		y - NATA Site # 18 ory - NATA Site # :			Х	X
		NATA Site # 237				
			- Reagent Water			
6	SS26	May 26, 2020	AUS Leachate - Reagent Water	S20-Jn27540	х	х
7	SS29	May 26, 2020	AUS Leachate - Reagent Water	S20-Jn27541	х	х
8	SS40	May 26, 2020	AUS Leachate - Reagent Water	S20-Jn27542	х	х
9	SS41	May 26, 2020	AUS Leachate - Reagent Water	S20-Jn27543	х	х
10	SS43	May 26, 2020	AUS Leachate - Reagent	S20-Jn27544	х	х

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Order No.:

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

726119

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name:

ADDITIONAL - BERMAGUI BASELINE CONTAMINATION

Project ID: 555344 Report #:

Phone: 02 8584 8888 Fax:

02 8584 8800

Received: Jun 17, 2020 3:22 PM

New Zealand

Due: Jun 19, 2020 **Priority:** 2 Day

Contact Name: Ian Batterley

Eurofins Analytical Services Manager: Alena Bounkeua

		Sa	mple Detail			Lead	AUS Leaching Procedure
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71			
	ney Laboratory					Х	Х
	bane Laborator	•					
Pert	h Laboratory - N │	NATA Site # 237	'36	I	I		
				Water	222 1 222 12		
11	SS50	May 26, 2020		AUS Leachate - Reagent Water	S20-Jn27545	х	x
12	BH01_0.5	May 26, 2020		AUS Leachate - Reagent Water	S20-Jn27546	х	х
13	D01_2020052 6	May 26, 2020		AUS Leachate - Reagent Water	S20-Jn27547	х	х
14	D01_2020052 7	May 26, 2020		AUS Leachate - Reagent Water	S20-Jn27548	х	х
15	D01_2020052	May 26, 2020		AUS Leachate - Reagent Water	S20-Jn27549	х	х

ABN - 50 005 085 521

Address:

web: www.eurofins.com.au e.mail: EnviroSales@eurofins.com

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261

Order No.:

Report #:

Phone:

Fax:

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

726119

02 8584 8888

02 8584 8800

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Jun 17, 2020 3:22 PM

Jun 19, 2020

Ian Batterley

2 Day

New Zealand

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

ERM Sydney

Level 15, 309 Kent St

Sydney

NSW 2000

Project Name: Project ID:

ADDITIONAL - BERMAGUI BASELINE CONTAMINATION

555344

Eurofins Analytical Services Manager: Alena Bounkeua

Sample Detail	Lead	AUS Leaching Procedure
Melbourne Laboratory - NATA Site # 1254 & 14271		
Sydney Laboratory - NATA Site # 18217	Х	Х
Brisbane Laboratory - NATA Site # 20794		
Perth Laboratory - NATA Site # 23736		
Test Counts	15	15

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

 $WA\ DWER\ (n=10):\ PFBA,\ PFPeA,\ PFHxA,\ PFHpA,\ PFOA,\ PFBS,\ PFHxS,\ PFOS,\ 6:2\ FTSA,\ 8:2\ FTSA,\ 6:2\ FTSA$

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Lead			mg/L	< 0.01			0.01	Pass	
LCS - % Recovery									
Heavy Metals									
Lead			%	88			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Lead	S20-Jn27547	CP	%	113			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	S20-Jn27535	CP	mg/L	0.02	< 0.01	82	30%	Fail	Q15
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Lead	S20-Jn27543	CP	mg/L	0.03	0.02	30	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Alena Bounkeua Analytical Services Manager
Gabriele Cordero Senior Analyst-Metal (NSW)

Glenn Jackson General Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 726119-L

CERTIFICATE OF ANALYSIS

Work Order : **ES2019415** Page : 1 of 5

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) Laboratory : Environmental Division Sydney

Contact : Brittany Knight Contact : Shane Ellis

Address : Level 15, 309 Kent Street Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW AUSTRALIA 2000

Telephone : +61 2 8784 8555

Project : 555344 BERMAGUI BASELINE CONTAMINATION Date Samples Received : 04-Jun-2020 13:28

Order number Date Analysis Commenced : 09-Jun-2020

 Order number
 : -- Date Analysis Commenced
 : 09-Jun-2020

 C-O-C number
 : sue Date
 : 16-Jun-2020 13:34

Sampler : ---Site : ----

Quote number : EN/114/19

No. of samples received : 2
No. of samples analysed : 2

Accreditation No. 825
Accredited for compliance with

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Dian Dao		Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Page : 2 of 5 Work Order : ES2019415

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project 555344 BERMAGUI BASELINE CONTAMINATION

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

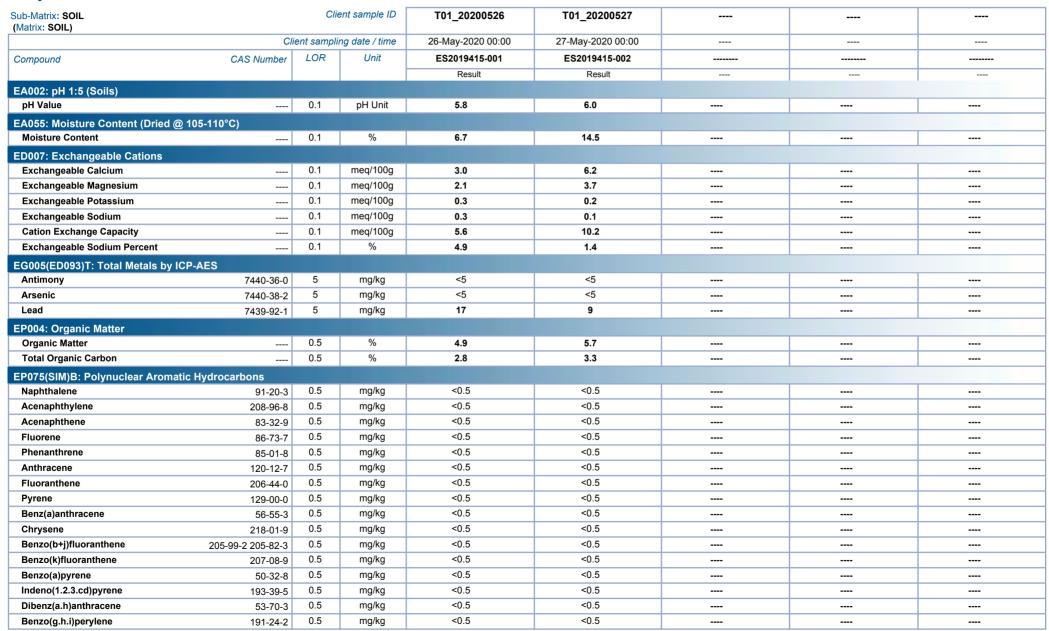
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- ED007 and ED008: When Exchangeable Al is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + Al3+).



Page : 3 of 5 Work Order : ES2019415

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 555344 BERMAGUI BASELINE CONTAMINATION

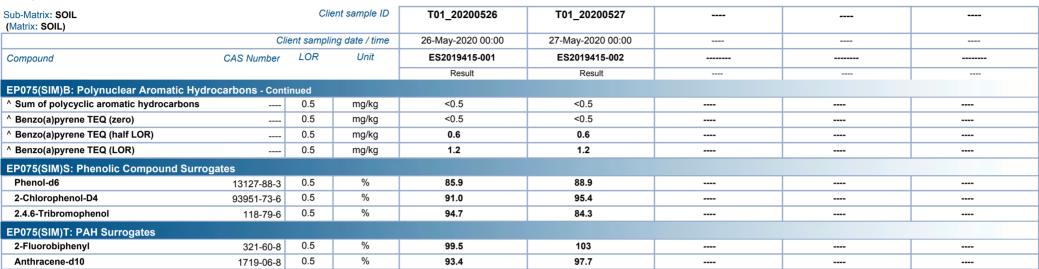
Analytical Results

Page : 4 of 5 Work Order : ES2019415

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

0.5

1718-51-0


%

96.8

Project 555344 BERMAGUI BASELINE CONTAMINATION

Analytical Results

4-Terphenyl-d14

99.2

Page : 5 of 5 Work Order : ES2019415

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)

Project : 555344 BERMAGUI BASELINE CONTAMINATION

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129

QUALITY CONTROL REPORT

Work Order : **ES2019415** Page : 1 of 5

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) Laboratory : Environmental Division Sydney

Contact : Brittany Knight : Shane Ellis

Address : Level 15, 309 Kent Street Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW AUSTRALIA 2000

Telephone : ---- Telephone : +61 2 8784 8555

Project : 555344 BERMAGUI BASELINE CONTAMINATION Date Samples Received : 04-Jun-2020 Order number : ---- Date Analysis Commenced : 09-Jun-2020

Sampler : ----

No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

: EN/114/19

: 2

Signatories

No. of samples received

Site
Quote number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Dian Dao		Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Page : 2 of 5
Work Order : ES2019415

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)
Project : 555344 BERMAGUI BASELINE CONTAMINATION

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 3068382)							
ES2019356-011	Anonymous	EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	13	10	32.5	No Limit
ES2019356-011	Anonymous	EG005T: Antimony	7440-36-0	5	mg/kg	<5	<5	0.00	No Limit
ES2019452-001	Anonymous	EG005T: Antimony	7440-36-0	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	5	5	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	28	30	6.80	No Limit
EA002: pH 1:5 (Soil	s) (QC Lot: 3073480)								
ES2020008-002	Anonymous	EA002: pH Value		0.1	pH Unit	4.2	4.2	0.00	0% - 20%
ES2019961-001	Anonymous	EA002: pH Value		0.1	pH Unit	6.3	6.3	0.00	0% - 20%
EA055: Moisture Co	ontent (Dried @ 105-11	0°C) (QC Lot: 3068385)							
ES2019408-011	Anonymous	EA055: Moisture Content		0.1	%	11.9	11.7	2.04	0% - 50%
ED007: Exchangeal	ole Cations (QC Lot: 3	078296)							
ES2019415-001	T01_20200526	ED007: Exchangeable Sodium Percent		0.1	%	4.9	4.8	0.00	0% - 20%
		ED007: Exchangeable Calcium		0.1	meq/100g	3.0	3.1	0.00	0% - 20%
		ED007: Exchangeable Magnesium		0.1	meq/100g	2.1	2.1	0.00	0% - 20%
		ED007: Exchangeable Potassium		0.1	meq/100g	0.3	0.3	0.00	No Limit
		ED007: Exchangeable Sodium		0.1	meq/100g	0.3	0.3	0.00	No Limit
		ED007: Cation Exchange Capacity		0.1	meq/100g	5.6	5.8	2.24	0% - 20%
EP004: Organic Mat	tter (QC Lot: 3080308)								
ES2019116-002	Anonymous	EP004: Organic Matter		0.5	%	0.6	0.6	0.00	No Limit
		EP004: Total Organic Carbon		0.5	%	<0.5	<0.5	0.00	No Limit
ES2019415-002	T01_20200527	EP004: Organic Matter		0.5	%	5.7	5.8	1.90	0% - 50%
		EP004: Total Organic Carbon		0.5	%	3.3	3.4	0.00	No Limit
EP075(SIM)B: Polyr	nuclear Aromatic Hydr	ocarbons (QC Lot: 3073127)							
•									

Page : 3 of 5
Work Order : ES2019415

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)
Project : 555344 BERMAGUI BASELINE CONTAMINATION

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Polyn	uclear Aromatic Hydroca	arbons (QC Lot: 3073127) - continued							
ES2019940-059	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page : 4 of 5 Work Order : ES2019415

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)
Project : 555344 BERMAGUI BASELINE CONTAMINATION

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 3068	382)								
EG005T: Antimony	7440-36-0	5	mg/kg	<5					
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	98 mg/kg	124	86.0	126	
EG005T: Lead	7439-92-1	5	mg/kg	<5	50 mg/kg	106	80.0	114	
ED007: Exchangeable Cations (QCLot: 3078296)									
ED007: Exchangeable Calcium		0.1	meq/100g	<0.1	1 meq/100g	107	75.8	120	
ED007: Exchangeable Magnesium		0.1	meq/100g	<0.1	1.67 meq/100g	101	74.9	115	
ED007: Exchangeable Potassium		0.1	meq/100g	<0.1	0.51 meq/100g	106	80.0	120	
ED007: Exchangeable Sodium		0.1	meq/100g	<0.1	0.87 meq/100g	102	80.0	120	
ED007: Cation Exchange Capacity		0.1	meq/100g	<0.1					
ED007: Exchangeable Sodium Percent		0.1	%	<0.1					
EP004: Organic Matter (QCLot: 3080308)									
EP004: Organic Matter		0.5	%	<0.5	2.53 %	87.4	82.0	98.0	
EP004: Total Organic Carbon		0.5	%	<0.5	1.46 %	87.7	81.0	99.0	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC	Lot: 3073127)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	94.4	77.0	125	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	96.9	72.0	124	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	92.4	73.0	127	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	96.7	72.0	126	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	95.4	75.0	127	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	94.7	77.0	127	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	99.3	73.0	127	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	97.3	74.0	128	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	90.8	69.0	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	89.8	75.0	127	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	88.4	68.0	116	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	88.6	74.0	126	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	91.4	70.0	126	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	88.3	61.0	121	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	86.0	62.0	118	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	88.9	63.0	121	

Page : 5 of 5 Work Order : ES2019415

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)
Project : 555344 BERMAGUI BASELINE CONTAMINATION

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 3068382)						
ES2019356-011 Anonymous		EG005T: Arsenic 74		50 mg/kg	70.2	70.0	130
		EG005T: Lead	250 mg/kg	88.2	70.0	130	
EP004: Organic M	atter (QCLot: 3080308)						
ES2019116-002	Anonymous	EP004: Organic Matter		0.99 %	77.3	70.0	130
		EP004: Total Organic Carbon		0.57 %	78.5	70.0	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 3073127)						
ES2019940-059	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	86.5	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	82.4	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2019415** Page : 1 of 5

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) Laboratory : Environmental Division Sydney

Contact : Brittany Knight Telephone : +61 2 8784 8555

Project : 555344 BERMAGUI BASELINE CONTAMINATION Date Samples Received : 04-Jun-2020

Site :---- Issue Date : 16-Jun-2020

 Site
 : --- Issue Date
 : 16

 Sampler
 : --- No. of samples received
 : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this

No. of samples analysed

: 2

Brief method summaries and references are also provided to assist in traceability.

report contribute to the overall DQO assessment and reporting for guideline compliance.

Summary of Outliers

Order number

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5 ES2019415 Work Order

ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) Client **Project** 555344 BERMAGUI BASELINE CONTAMINATION

Outliers: Analysis Holding Time Compliance

Matrix: SOIL

Method	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
EA002: pH 1:5 (Soils)						
HDPE Soil Jar						
T01_20200526	11-Jun-2020	02-Jun-2020	9			
HDPE Soil Jar						
T01_20200527	11-Jun-2020	03-Jun-2020	8			
EP004: Organic Matter						
HDPE Soil Jar						
T01_20200526	16-Jun-2020	02-Jun-2020	14			
HDPE Soil Jar						
T01_20200527	16-Jun-2020	03-Jun-2020	13			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons						
HDPE Soil Jar						
T01_20200526	12-Jun-2020	09-Jun-2020	3			
HDPE Soil Jar						
T01_20200527	12-Jun-2020	10-Jun-2020	2			

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: 🗴 = Holding time	breach ; ✓ = Withi	n holding time	
Method	Sample Date	E	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA002: pH 1:5 (Soils)								
HDPE Soil Jar (EA002) T01_20200526	26-May-2020	11-Jun-2020	02-Jun-2020	<u>\$</u>	12-Jun-2020	12-Jun-2020	✓	
HDPE Soil Jar (EA002) T01_20200527	27-May-2020	11-Jun-2020	03-Jun-2020	se	12-Jun-2020	12-Jun-2020	✓	
EA055: Moisture Content (Dried @ 105-110°C)								
HDPE Soil Jar (EA055) T01_20200526	26-May-2020				09-Jun-2020	09-Jun-2020	✓	
HDPE Soil Jar (EA055) T01_20200527	27-May-2020				09-Jun-2020	10-Jun-2020	✓	

Page : 3 of 5 Work Order : ES2019415

T01 20200527

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)
Project : 555344 BERMAGUI BASELINE CONTAMINATION

Matrix: SOIL Evaluation: **x** = Holding time breach; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation ED007: Exchangeable Cations HDPE Soil Jar (ED007) 26-May-2020 15-Jun-2020 23-Jun-2020 15-Jun-2020 23-Jun-2020 T01 20200526 HDPE Soil Jar (ED007) T01 20200527 27-May-2020 15-Jun-2020 24-Jun-2020 15-Jun-2020 24-Jun-2020 EG005(ED093)T: Total Metals by ICP-AES HDPE Soil Jar (EG005T) 22-Nov-2020 22-Nov-2020 10-Jun-2020 T01 20200526 26-May-2020 09-Jun-2020 HDPE Soil Jar (EG005T) T01 20200527 27-May-2020 09-Jun-2020 23-Nov-2020 10-Jun-2020 23-Nov-2020 EP004: Organic Matter HDPE Soil Jar (EP004) 26-May-2020 16-Jun-2020 02-Jun-2020 16-Jun-2020 14-Jul-2020 T01_20200526 10 HDPE Soil Jar (EP004) 27-May-2020 16-Jun-2020 03-Jun-2020 16-Jun-2020 14-Jul-2020 T01 20200527 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons HDPE Soil Jar (EP075(SIM)) T01 20200526 26-May-2020 12-Jun-2020 09-Jun-2020 15-Jun-2020 22-Jul-2020 HDPE Soil Jar (EP075(SIM))

27-May-2020

12-Jun-2020

10-Jun-2020

15-Jun-2020

22-Jul-2020

Page : 4 of 5 Work Order ES2019415

Client ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) 555344 BERMAGUI BASELINE CONTAMINATION Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Exchangeable Cations	ED007	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Moisture Content	EA055	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Organic Matter	EP004	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH (1:5)	EA002	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	3	20	15.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Exchangeable Cations	ED007	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Organic Matter	EP004	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Exchangeable Cations	ED007	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Organic Matter	EP004	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Organic Matter	EP004	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 5 Work Order : ES2019415

Client : ENVIRONMENTAL RESOURCES MANAGEMENT (ERM)
Project : 555344 BERMAGUI BASELINE CONTAMINATION

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH (1:5)	EA002	SOIL	In house: Referenced to Rayment and Lyons 4A1 and APHA 4500H+. pH is determined on soil samples after a 1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3)
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).
Exchangeable Cations	ED007	SOIL	In house: Referenced to Rayment & Lyons (2011) Method 15A1. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 301)
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Organic Matter	EP004	SOIL	In house: Referenced to AS1289.4.1.1 - 1997. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270E. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
Preparation Methods	Method	Matrix	Method Descriptions
Exchangeable Cations Preparation Method	ED007PR	SOIL	In house: Referenced to Rayment & Higginson (1992) method 15A1. A 1M NH4Cl extraction by end over end tumbling at a ratio of 1:20. There is no pretreatment for soluble salts. Extracts can be run by ICP for cations.
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Organic Matter	EP004-PR	SOIL	In house: Referenced to AS1289.4.1.1 - 1997. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3) (Method 105)
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

Shane Ellis

From: Brittany Knight <Brittany.Knight@erm.com>

Sent: Thursday, 11 June 2020 8:43 AM

To: ALSEnviro Sydney

Subject: [EXTERNAL] - FW: CoC for ALS Workorder: ES2019415 | Your Reference: 555344

BERMAGUI BASELINE CONTAMINATION

Attachments: ES2019415_COC.pdf

Categories: Shane

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

Morning,

Can someone please confirm that the following two samples were received:

- T01_20200526
- T01_20200527

Can you please analyse these for

- metals (lead, antimony and arsenic);
- soil parameters (%clay, cation exchange capacity, total organic carbon and pH); and
- PAH.

Please hold the remainder of the sample as we may have extra analysis.

Kind regards

Brittany Knight
Environmental Scientist

From: angel-no-reply@alsglobal.com <angel-no-reply@alsglobal.com>

Sent: Thursday, June 4, 2020 10:17 PM

To: Brittany Knight <Brittany.Knight@erm.com>

Subject: CoC for ALS Workorder: ES2019415 | Your Reference: 555344 BERMAGUI BASELINE CONTAMINATION

Deliverables for ALS Workorder ES2019415

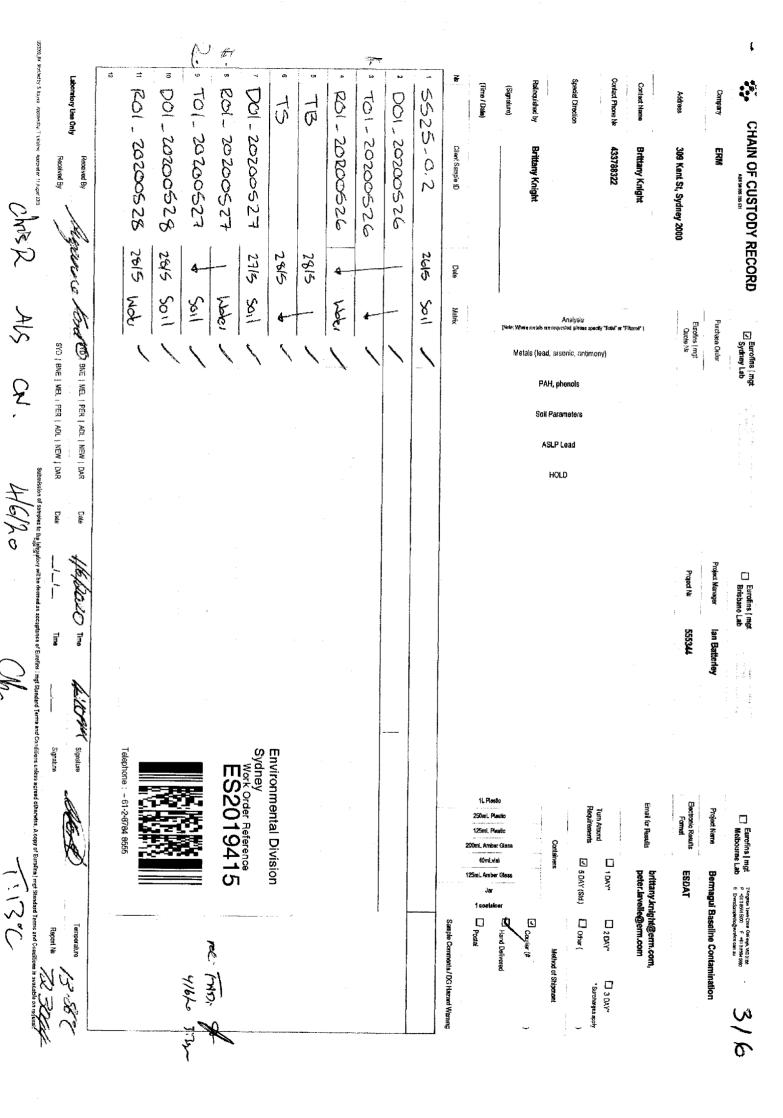
Project: 555344 BERMAGUI BASELINE CONTAMINATION

Dear Brittany Knight,

Please find enclosed the following deliverables for ES2019415:

ES2019415 COC.pdf

Report Recipients


- Brittany Knight
 - O ES2019415_COC.pdf (Email)
- PETER LAVELLE
 - ES2019415_COC.pdf (Email)
- Ian Batterley
 - O ES2019415_COC.pdf (Email)

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

This electronic mail message may contain information which is (a) LEGALLY PRIVILEGED, PROPRIETARY IN NATURE, OR OTHERWISE COVERED BY LAW FROM DISCLOSURE, and (b) intended only for the use of the Addressee (s) names herein. If you are not the Addressee (s), or the person responsible for delivering this to the Addressee (s), you are hereby notified that reading, copying, or distributing this message is prohibited. If you have received this electronic mail message in error, please contact us immediately and take the steps necessary to delete the message completely from your computer system. Environmental Resources Management Australia Pty Ltd (ERM) has systems in place to encourage a virus free software environment, however we cannot be liable for any loss or damage, corruption or distortion of electronically transmitted information, or for any changes made to this information during transferral or after receipt by the client.

Please visit ERM's web site: http://www.erm.com. To find out how ERM manages personal data, please review our Privacy Policy

#AU04 Enviro Sample NSW

To:

Brittany Knight

Subject:

RE: Eurofins Sample Receipt Advice - Report 723044 : Site BERMAGUI BASELINE

CONTAMINATION (555344)

From: Brittany Knight [mailto:Brittany.Knight@erm.com]

Sent: Wednesday, 3 June 2020 10:55 AM

To: #AU04 Enviro Sample NSW

Cc: Peter Lavelle; Ian Batterley; Anne Ashworth

Subject: RE: Eurofins Sample Receipt Advice - Report 723044 : Site BERMAGUI BASELINE CONTAMINATION

(555344)

Hello,

As discussed, can you please hold the analysis on the following triplicate samples and send them on to ALS:

- T01_20200526
- TO1 20200527

Please contact me if you have any questions.

Kind regards

Brittany Knight Environmental Scientist

ERM

Level 15 | 309 Kent St | Sydney NSW 2000 T +61 (0)2 8586 8744 | M +61 (0) 433 788 322 E brittany.knight@erm.com | W www.erm.com

ERM The business of sustainability

Please consider the environment before printing this message
Read our 2019 Sustainability Report: From The What to The How and ERM Foundation Annual Review.

From: EnviroSampleNSW@eurofins.com < EnviroSampleNSW@eurofins.com >

Sent: Tuesday, June 2, 2020 9:54 PM

To: lan Batterley < lan.Batterley@erm.com>

Cc: Brittany Knight <Brittany.Knight@erm.com>; Peter Lavelle <Peter.Lavelle@erm.com>

Subject: Eurofins Sample Receipt Advice - Report 723044 : Site BERMAGUI BASELINE CONTAMINATION (555344)

Dear Valued Client,

Please find attached an amended Sample Receipt Advice (SRA), an amended Summary Sheet and a scanned copy of your Chain-of-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section

APPENDIX G PROUCL CALCULATIONS

www.erm.com Version: 1.1 Project No.: 0555344 Client: Sporting Clays NSW 10 July 2020

	Α	В	С	D	Е	F	G	Н	I	J	K	L		
1					UCL Statis	stics for Unc	ensored Ful	II Data Sets						
2		Llaan Cala	-4- d O-4:											
3		Time of Co	cted Options		20/06/2020	1.E1.22 DM								
4	Date/	Time of Co	From File	WorkSheet) 1:51:32 PM								
5		F. II			.XIS									
6		onfidence (I Precision	OFF 95%										
7				2000										
8	Number of	bootstrap C	эреганопъ	2000										
9														
10	Benzo[a]pyi	rene												
	Benzolalby	10110												
12						General	Statistics							
13			Total N	Number of O	bservations				Number	of Distinct C	bservations	2		
14			Totali	tarribor or o	bool valione	<u> </u>					bservations			
15					Minimum	0.5			ramber	or whoshing c	Mean			
16					Maximum						Median			
17		S								Std F	rror of Mean			
18	Si Coefficient of Variatio									Giù. L	Skewness	3.317		
19				Johnsteill	or variation	0.020					CKCWIIC35	3.517		
20						Normal C	OF Test							
21			Sh	apiro Wilk T	est Statistic				Shapiro Wi	ilk GOF Tes	t			
	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value							Data No	•	5% Significa				
23	5% Snapiro Wilk Critical Value Lilliefors Test Statistic							Data No		GOF Test	nice Ecver			
24			5%	Lilliefors C				Data No		5% Significa	nce I evel			
25			37	Lillicioi3 O		t Normal at 5	i% Significa		r Normai at s	5 70 Olgrillica	TICC LCVCI			
26					Data No.		70 Olgililloa	1100 20101						
27					As	suming Norr	nal Distribu	tion						
28 29			95% No	rmal UCL		- Taning Itan			UCLs (Adiu	sted for Ske	ewness)			
30			0070110		ent's-t UCL	0.653					Chen-1995)	0.703		
31				0070 0144		0.000					nson-1978)			
32									70 111041110	u 1002 (00.		5.002		
33						Gamma (GOF Test							
34				A-D T	est Statistic	3.699		Ander	son-Darlina	Gamma GC	OF Test			
35					ritical Value		Da				gnificance Le	evel		
36					est Statistic					ov Gamma C	-			
37					ritical Value		Da	Data Not Gamma Distributed at 5% Significance Level						
38				Data	a Not Gam	⊣ ma Distribute				•				
39														
40						Gamma	Statistics							
41					k hat (MLE)				k s	tar (bias cor	rected MLE)	11.59		
42					a hat (MLE)					•	rected MLE)			
43					u hat (MLE)					•	s corrected)			
44			ML	E Mean (bias							s corrected)	0.163		
45				•				Α			, Value (0.05)			
46			Adjust	ed Level of S	Significance	0.0278					quare Value			
47					=									
48					As	suming Gam	ıma Distribu	ition						
49	95%	Approxima	ate Gamma I	JCL (use wh					sted Gamm	a UCL (use	when n<50)	0.662		
50				•				•		•				
51						Lognormal	GOF Test							
52			Sh	apiro Wilk T	est Statistic			Shap	oiro Wilk Log	gnormal GO	F Test			
53				apiro Wilk Ci						t 5% Signific				
54					est Statistic				_	ormal GOF				
55			5%	Lilliefors C	ritical Value	0.251			-	t 5% Signific				
56					Data Not I	⊥ _ognormal at	5% Signific		•					
57							<u> </u>							
3,														

	А	В	С	D	Е	F	G	Н	I	J	K	L
58						Lognorma	l Statistics					
59			M	inimum of L	ogged Data	-0.693	Mean of logged Data -0					-0.621
60			Ma	ximum of L	ogged Data	0.0953				SD of I	ogged Data	0.238
61												
62					Assu	ming Logno	rmal Distrib	ution				
63				(95% H-UCL	0.637			90% C	hebyshev (N	MVUE) UCL	0.67
64			95% CI	nebyshev (N	IVUE) UCL	0.724			97.5% C	hebyshev (N	MVUE) UCL	0.799
65			99% CI	nebyshev (N	IVUE) UCL	0.946						
66												
67					•		tion Free UC					
68		Data do not follow a Discernible Distribution (0.05)										
69												
70					•		tribution Free	e UCLs				
71					% CLT UCL	0.644		95% Jackknife UCL				N/A
72			95% S	tandard Boo	otstrap UCL	N/A	95% Bootstrap-t UCL					N/A
73				% Hall's Boo	<u>'</u>	N/A			95% P	ercentile Bo	otstrap UCL	N/A
74					otstrap UCL	N/A						
75			90% Chel	oyshev(Mea	ın, Sd) UCL	0.718			95% Che	byshev(Mea	an, Sd) UCL	0.792
76			97.5% Chel	oyshev(Mea	ın, Sd) UCL	0.895			99% Che	byshev(Mea	an, Sd) UCL	1.097
77												
78						Suggested	UCL to Use					
79				95% Stud	lent's-t UCL	0.653				or 95% Mo	dified-t UCL	0.662
80												
81	Note	: Suggestion	ns regarding					·			opriate 95%	UCL.
82							a size, data					
83			endations are	•								· ·
84	Howev	er, simulation	ons results w	ill not cover	all Real Wo	orld data set	s; for addition	onal insight	the user ma	y want to co	onsult a stati	stician.
85												

	А	В	С	D	Е	F	G	Н	I	J	K	L	
1					UCL Stati	stics for Data	Sets with I	Non-Detects	•				
2		Hear Salar	cted Options										
3		Time of Co			130/06/202	0 12:15:15 P	M						
4	Date	Time or Co	From File		0 12.13.131	IVI							
5 6	From File WorkSheet.xls Full Precision OFF												
7	С	onfidence (95%									
8	Number of	Bootstrap (Operations	2000									
9													
10	Lead												
11													
12							Statistics						
13			Total N		Observation				Number	of Distinct O		30	
14			N1		er of Detect	-			Nimaka	Number of N		1	
15			Nui		tinct Detect				Numbe	r of Distinct N		1	
16					imum Detec imum Detec						Non-Detect Non-Detect	5	
17					ance Detect						Non-Detects	2.326%	
18					lean Detect						SD Detects	156.2	
19					dian Detect						CV Detects	2.307	
20 21		Skewness Detects									osis Detects	32.68	
22	Mean of Logged Detects									ged Detects	0.947		
23	s 5. 25ggst 25ti5ti6 5.555												
24		Normal GOF Test on Detects Only											
25	Shapiro Wilk Test Statistic					c 0.354	Shapiro Wilk GOF Test						
26	5% Shapiro Wilk Critical Value				e 0.942	Detected Data Not Normal at 5% Significance Level							
27		Lilliefors Test Statistic						Lilliefors GOF Test					
28	5% Lilliefors Critical Value						Detected Data Not Normal at 5% Significance Level						
29		Detected Data Not Normal at 5% Significance Level											
30													
31			Kaplan-Me	er (KM) S		ng Normal C	intical Valu	es and othe	·			00.50	
32					KM Mea		KM Standard Error of Mean 23.59 95% KM (BCA) UCL 109.2						
33				QE%	KM SI KM (t) UC		95% KM (BCA) UCL 109. 95% KM (Percentile Bootstrap) UCL 108.						
34					KM (z) UC		95% KM (Percentile Bootstrap) OCI					199.2	
35 36			90		byshev UC		95% KM Chebyshev UCL 169.1						
37					byshev UC		99% KM Chebyshev UCL 301						
38					•						,		
39				G	amma GOF	Tests on D	etected Obs	servations C	nly				
40				A-D	Test Statisti	•							
41				5% A-D (Critical Valu	e 0.786	Detecte	ed Data Not	Gamma Dis	stributed at 59	% Significand	e Level	
42				K-S	Test Statisti	c 0.255		K	Colmogorov	-Smirnov GC	F		
43					Critical Value					stributed at 59	% Significano	e Level	
44				Detecte	d Data Not	Gamma Dist	ributed at 5	5% Significa	nce Level				
45						01. 11. 11		D-+- C :					
46						Statistics of	Detected I	Data Only				0.704	
47				TL -	k hat (MLE					star (bias corr	1	0.791	
48					ta hat (MLE nu hat (MLE				ı neta s	tar (bias corr nu star (bias	,	85.65 66.41	
49					ean (detects	′				nu stat (Did	s corrected)	00.41	
50 E1				IVIE	Jan (delects	07.71							
51 52				G	amma ROS	S Statistics u	sing Impute	ed Non-Dete	cts				
53		G	ROS may no				• •			at multiple D	Ls		
54	GR							•		e size is sma		20)	
55						method may					= '		
56						cially true whe	•						
57		For gamm	a distributed	detected d	lata, BTVs a	and UCLs ma	y be compu	uted using g	amma distr	ibution on KN	// estimates		
	I						-						

	Α	В	С	D	E	F	G	Н	l	J	K	L
58					Minimum	0.01					Mean	66.14
59					Maximum	1000	Median CV					24
60					SD	154.7	k star (bias corrected MLE)					2.339
61				The	k hat (MLE)	0.693 95.37				`	′	0.661
62					eta hat (MLE) nu hat (MLE)	59.64	Theta star (bias corrected MLE)				56.81	
63			Δdiuste		gnificance (β)	0.0444	nu star (bias corrected)				30.61	
64		Annro			lue (56.81, α)	40.48	Adjusted Chi Square Value (56.81, β)				40.01	
65 66	959				when n>=50)	92.8			•		when n<50)	93.91
67				((
68				Es	stimates of G	amma Parai	meters using	g KM Estim	ates			
69					Mean (KM)	66.25					SD (KM)	152.8
70				V	ariance (KM)	23358				SE c	of Mean (KM)	23.59
71					k hat (KM)	0.188					k star (KM)	0.19
72					nu hat (KM)	16.16					nu star (KM)	16.37
73				ti	neta hat (KM)	352.6				the	eta star (KM)	348.1
74					ercentile (KM)	84.96			90%	6 gamma pe	rcentile (KM)	200.2
75			959	% gamma pe	ercentile (KM)	345.7			99%	6 gamma pe	rcentile (KM)	749.7
76												
77						a Kaplan-M	eier (KM) St					
78	Approximate Chi Square Value (16.37,								-		ue (16.37, β)	8.02
79						(M-UCL (use	when n<50)	135.2				
80		Lognormal GOF Test on Detected Observations Only										
81						0.829	elected Ob	servations	•	/illy COE Too		
82	Shapiro Wilk Test Statisti 5% Shapiro Wilk Critical Value				0.829	Shapiro Wilk GOF Test Detected Data Not Lognormal at 5% Significance Level						
83 84	5% Snapiro Wilk Critical Value Lilliefors Test Statistic					0.199	Lilliefors GOF Test					VCI
85						0.135	Det	ected Data			ianificance Le	vel
86	5% Lilliefors Critical Value 0.135 Detected Data Not Lognormal at 5% Significance Level Detected Data Not Lognormal at 5% Significance Level											
87												
88				Lo	gnormal ROS	Statistics I	Using Imput	ed Non-De	tects			
89				Mean in C	Original Scale	66.21				Mean	in Log Scale	3.455
90				SD in C	Original Scale	154.7	SD in Log Scal					0.999
91		95% t UC	L (assume	es normality	of ROS data)	105.9	95% Percentile Bootstrap UCI					109
92					ootstrap UCL		95% Bootstrap t UCL					201.6
93				95% H-UC	L (Log ROS)	74.98						
94												
95			Statist		M estimates		Data and As	ssuming Lo	gnormal D			01.00
96					lean (logged)	3.464			050/ /		M Geo Mean	31.93
97			(M Ctand-		SD (logged)	0.968			95% (ue (KM-Log)	2.327
98		ľ	vivi otanda		lean (logged) I SD (logged)	0.149 0.968			Q5% (CL (KM -Log) ue (KM-Log)	72.25
99		ı	(M Standa		lean (logged)	0.968			30 % (onucai⊓ Väl	ue (rtivi-LOG)	2.321
100		'	Canaa		. Ja., (loggod)	5.175						
101						DL/2 St	tatistics					
102			DL/2	2 Normal					DL/2 Log-	Transforme	d	
104				Mean in C	Original Scale	66.19					in Log Scale	3.447
105				SD in C	Original Scale	154.7				SD	in Log Scale	1.016
106			95% t	UCL (Assum	es normality)	105.9				95%	H-Stat UCL	76.46
107			DL/2 is	s not a reco	mmended me	ethod, provi	ded for com	parisons a	nd historica	al reasons		
108												
109					Nonparame							
110				Data do n	ot follow a Di	scernible D	istribution a	t 5% Signif	icance Lev	rel		
111						_						
112						Suggested	UCL to Use					
113			9	5% KM (Che	byshev) UCL	169.1						
114												

	Α	В	С	D	E	F	G	Н	L	J	K	L
115	Note	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.										UCL.
116		Recommendations are based upon data size, data distribution, and skewness.										
117	The	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).										
118	Howev	er, simulatio	ons results w	ill not cover	all Real Wo	orld data set	ts; for addition	onal insight	the user ma	y want to co	onsult a stat	istician.
119												

APPENDIX H QAQC ASSESSMENT

www.erm.com Version: 1.1 Project No.: 0555344 Client: Sporting Clays NSW 10 July 2020

H1. QUALITY ASSURANCE AND QUALITY CONTROL

The objective of this data assessment is to evaluate the quality of data gathered during the project. This process has been undertaken to assess whether the sample data is of a suitable standard to be utilised in this report. The data assessment consists of comparing field and laboratory QA/QC results to documented NEPM, ANZECC, USEPA SW-846 guidelines, USEPA CLP National Functional Guidelines for Inorganic and Organic Data Review, and other internationally recognised publications. The data assessment has been prepared in accordance with the NEPC (2013) *National Environmental Protection (Assessment of Site Contamination) Measure 1999* and NSW EPA (2020) *Consultants reporting on contaminated land* and NSW DEC (2017) *Guidelines for the NSW Site Auditor Scheme (3rd Edition)*. Particular reference is made to the PARCC parameters (precision, accuracy, representativeness, completeness and comparability) in evaluating the data quality.

Table H.1 presents the degree of QA/QC pertinent to the field investigations.

Table H.2 summarises the field QA/QC exceedences.

Table H.3 presents the degree of QA/QC pertinent to the laboratory program.

Table H.4 summarises the laboratory QA/QC exceedences.

The data quality indicators of precision, accuracy, representativeness, comparability and completeness have been assessed as shown in *Table H.5*.

Table H.1 Field QA/QC Assessment

QA/QC Criterion	Comments
QA/QC program includes replicate samples	Field quality control samples including 10 intra-laboratory duplicates were analysed to demonstrate the suitability of the investigation works. 2 inter-laboratory duplicate samples were sent to a second laboratory. An evaluation of the laboratory QA/QC reports indicated that the laboratory was able to generate data of acceptable precision and accuracy.
All relevant media assessed	Soil, surface water and sediment samples were collected as part of the investigation works. ERM notes that intra and inter-laboratory duplicates were only collected from soil samples however as laboratory analysis of CoPCs for surface water and sediment samples returned concentrations generally less than LOR and / or the adopted assessment criteria, ERM does not consider this minor non-conformance to have affected the reliability of the overall collected data set.
Appropriateness of sampling strategy	The sampling strategy (including depths and locations) was considered appropriate for the purpose of the investigation. Sample locations are presented on Figure 2 and were selected to assess areas of environmental concern identified during the desktop review and background concentrations within representative on and offsite areas.
Sample collection, handling and transportation procedures.	Samples were collected, handled and transported following ERM standard operating procedures.
Sampling is representative of site conditions	The number and type of samples collected as part of the characterisation works was considered to be representative of the area of concern. A total of 58 soil investigation locations were completed an area of 24 ha. A total of 6 surface water and 6 sediment samples were collected from representative areas within the Site to assess the onsite catchment and potential offsite migration pathways.
Field QA/QC plan	The sampling team was noted in the report. Samples were collected using a range of hand tools included trowels, hand augers and push tubes (for sediment). Collected samples were placed in laboratory supplied sample jars, stored in a cool box, and forwarded to the NATA accredited laboratory under COC conditions. The methods used to collect the samples, the types of sample containers, preservation techniques and custody protocols outlined within the EM (2020) SAQP were followed and documented appropriately. Decontamination procedures were implemented between the collection of samples. The processes followed were considered suitable for minimising cross-

www.erm.com Version: 1.1 Project No.: 0555344 Client: Sporting Clays NSW 10 July 2020 Page H1

QA/QC Criterion	Comments
	contamination during sampling. 3 rinsate blanks (R01_20200526, R01_20200527 and R01_20200528) were collected to demonstrate the efficacy of the decontamination procedures.
	 Laboratory analysis of all CoPCs within collected rinsate samples returned concentrations less than LOR.
	Borehole logs and/or other sampling records were completed, describing the media sampled, the duplicate types and sampling locations.
	Duplicate samples were collected following ERM standard operating procedures at a ratio of one intra-laboratory duplicate per 6.2 primary samples.
	Samples were not homogenised prior to splitting to minimise potential loss of volatile analytes. The RPDs of the duplicate sample pairs were generally below the acceptance limits (30% RPD where one or both values were greater than 10 x LOR or 50% RPD where both values less than 10 x LOR). Minor exceedences are presented in <i>Table A.2</i> .
	Trip blank and rinsate blank samples were collected as part of this investigation. All COPCs were reported below the laboratory LOR, indicating low likelihood of cross-contamination. Background samples were not collected as part of this investigation as a review of geological information and site land use history did not indicate the likely presence of elevated background concentrations of the COPCs in soil on the Site.
	Trip spikes were collected as part of this investigation. Comparison with a trip spike control sample retained by the laboratory did not indicate unacceptable loss of volatile analytes during sample transport.
	Field instruments used as part of this investigation were appropriately calibrated and used according to the manufacturer's instructions.

Field QA/QC Exceedences

The following minor exceedances of field duplicate RPD acceptable limits were noted:

Table H.2 Field QA/QC Exceedences

Analyte	LOR	Primary Result	Duplicate Result	RPD	Comment
Lead	5	SS09 19 mg/kg	D01_20200526 38 mg/kg	67%	ERM notes that as the concentrations of both samples were significantly less than the adopted screening criteria, this minor non-conformance is considered unlikely to have affected the suitability of the overall data set.

ERM notes that samples SS40 / D01_20200527, BH101_0.5 / D01_2000528 and SS23 / T01_20200526 also exceeded the adopted RPD acceptance criteria for total organic carbon. As samples were collected from heterogeneous topsoil materials containing residual organic matter (leaves etc.) it is the opinion of ERM that this minor non-conformance is unlikely to have affected the overall quality of the collected data set.

Table H.3 Laboratory QA/QC Assessment

QA/QC Criterion	Comments
Appropriate methodologies used	The laboratory used for the investigation was NATA accredited Eurofins located in Lane Cove NSW, NATA Registration No. 1261.
for sample analyses	All laboratory reports were NATA stamped and signed by a NATA signatory. All methodologies were considered appropriate for the identified contaminants of concern in the matrix.
	Statistical data presented in the laboratory QA/QC report was considered adequate in demonstrating the precision and accuracy of the methods used to analyse field samples.

www.erm.com Version: 1.1 Project No.: 0555344 Client: Sporting Clays NSW 10 July 2020 Page H2

Bermagui Sporting Clays - APPENDIX H QAQC

QA/QC Criterion	Comments
Appropriate practical quantitation limits (LORs)	LORS for each analyte are presented in the laboratory reports. All sample results were reported with LORs below the site assessment criteria with the exception of B[a]P in surface water were the LOR was higher than the adopted drinking water criteria. ERM notes that as all PAHs in collected water samples were less than LOR, this is not considered to affect the overall reliability of the collected data set.
Laboratory QA/QC plan	Copies of signed chain of custody forms were returned by the laboratory. All samples were received and analysed within specified laboratory holding times. This information was documented on the laboratory reports. The analytical methods used were NATA approved as documented on the laboratory reports. Laboratory quality control samples included laboratory control samples, internal duplicates, matrix spikes and method blanks. The types of QA/QC samples analysed by the laboratory for the documented samples were considered sufficient to assess the precision and accuracy of the laboratory methods used. The statistical data presented in the laboratory QA/QC report was considered adequate in demonstrating the precision and accuracy of the methods used to analyse field samples. ERM notes that arsenic analysis of laboratory duplicate S20 within batch 723044-S-V02 returned a RPD of 38% exceeding the adopted RPD criteria. ERM notes that this is an isolated exceedance and as all results were less than the adopted assessment criteria, this minor exceedance is unlikely to affect the overall quality of the collected data set.

Table H.4 Laboratory QA/QC Exceedences

QA/QC Sample Type	Analyte	Sample ID	Recovery	Limit	Comments		
Laboratory Control Spike	Not applicable – all within acceptable limits						
Matrix Spike	Not applicable -	Not applicable – all within acceptable limits					
Surrogate Not applicable – all within acceptable limits							

Table H.5 Overall Sampling and Analysis Methodology Assessment

Field Considerations	Laboratory Considerations						
Precision Requirements							
The investigation was conducted following ERM SOPs and any variations from these procedures were documented.	Analysis of the following were reported: Laboratory and inter-laboratory duplicates; Field duplicates; Field prepared trip blank samples.						
Pre	cision Comments						

No significant variations from ERM SOPs were noted. Field split duplicates were generally reported within the acceptance limits of 30% RPD. Minor exceedences were noted, as presented in Table H2.

 www.erm.com
 Version: 1.1
 Project No.: 0555344
 Client:
 Sporting Clays NSW
 10 July 2020
 Page H3

Field Considerations Accuracy Requirements The investigation was conducted following ERM SOPs and any variations from these procedures were documented. Analysis of the following were reported: Field blanks; Rinsate blanks; Method blanks; Matrix spikes; Matrix spike duplicates; Surrogate spikes; Laboratory control samples; and Laboratory prepared spikes

Accuracy Comments

No significant variations from ERM SOPs were noted. Laboratory QA/QC samples were reported within the acceptance limits specified in the laboratory reports.

Representativeness Requirements

Appropriate media were identified and sampled according to the SAQP (noting that some surface water / sediment locations were replaced with soil samples due to the dry conditions and lack of water in creeks / dams).

All samples were analysed according to the SAQP.

Representativeness Comments

No exceedences of the requirements were noted.

Comparability Requirements

The same SOPs were used during each sampling event.

All sampling was conducted by an appropriately qualified and experienced sampler.

Impacts of climatic conditions on sample integrity were minimised by placing samples in a chilled cooler on ice immediately after sampling.

The types of samples collected were consistent.

Results of Field Screening were comparable with Lab analysis.

Analytical methods suitable for the target media were used.

The LORs used to report analyte concentrations were less than the adopted investigation levels with the exception of B(a)P within surface waters as detailed above within table H3

The same laboratory was used to analyse all primary samples.

The same units were used to report analyte concentrations where appropriate.

Results of Lab analysis comparable with field screening results.

Comparability Comments

No exceedences of the requirements were noted.

Completeness Requirements

All critical locations identified within the ERM (2020) SAQP were sampled

The investigation was conducted following ERM SOPs and any variations from these procedures were documented.

All sampling was conducted by an appropriately qualified and experienced sampler.

Documentation of field works was provided.

All critical samples were analysed according to the SAQP.

All analytes were analysed according to the SAQP with minor exception of the omission of duplicates for surface water and sediment.

Appropriate analysis methods and LORs were used. Sample documentation was provided.

Sample holding times were complied with.

Completeness Comments

No exceedences of the requirements were noted.

www.erm.com Version: 1.1 Project No.: 0555344 Client: Sporting Clays NSW 10 July 2020 Page H4

ERM has over 160 offices across the following countries and territories worldwide

The Netherlands Argentina Australia New Zealand Belgium Norway Brazil Panama Canada Peru Chile Poland China Portugal Colombia Puerto Rico France Romania Germany Russia Ghana Senegal Guyana Singapore Hong Kong South Africa India South Korea Indonesia Spain Ireland Sweden Switzerland Italy Japan Taiwan Kazakhstan Tanzania Thailand Kenya Malaysia UAE UK Mexico Mozambique US Myanmar Vietnam

ERM's Sydney Office

Level 15, 309 Kent Street Sydney, NSW, 2000

T: 02 8584 8888

www.erm.com

